Computational Models, Spring 2014 Exrecise #6
Turing Machines, P and NP

1. Show that the following languages are NP-Complete

(a) Partition :={z1,...zn | IS C[1...0}, 3 0,cq@i =D 05 @i}
(b) XS :={z1,...2n | ISC[1...0], > cqi + |5 =X ,eq i +15]}

2. Show that both of these decision problems are in P

(a) DNF-Satisfability: Given a DNF formula is it satisfiable.

(b) CNF-Tautology: Given a CNF formula, is it a tautology (a tautology is a formula which is true
in every possible assignment)?

3. Consider the following algorithm to solve the vertex cover problem. First, we generate all size-k subsets
of the vertices. There are O(n*) of them. Then we check whether any of the resulting subgraphs is
complete. Why is this not a polynomial-time algorithm?

4. For the following decision problems, determine whether they are in P or in N'PC (assuming P # NP).
Prove your answer.

(a) Input: sets 4; ... A,, and a number k.
Question: does there exist a set C of size k, such that for every 1 <i <n A; NC # 0?7

(b) Input: a 3CNF formula ¢ Question: does there exist an assignment that satisfies ¢
and gives True for exactly 10 variables?

(¢) Input: a 3CNF formula

Question: do there exist at least two assignments that satisfy ¥7
(d) Input: graph G.

Question: does there exist a Hamiltonian path in G (between any pair of vertices)?
(e) Input: graph G and a number k.

Question: does there exist a simple path in G of length > k7

(f) Input: graph G and a number k.
Question: is there a Vertex-Cover S in G of size k and an IndependentSet, T, of size %, such that
TCS?

5. Prove that if P = NP then every language in P, except) and X* is N’PC. Why can’t § and X* be
NPC.

6. Consider the following language:
L ={#1"#x1,...xp | 3i,j stx; =z}

. A possible way to implement a Turing Machine that accepts the language is as follows: “Choose
(non-deterministically) two indices ¢ and j (0 < 4,5 < n) and write them on a second tape. Now check
(using a deterministic TM) if (1) ¢ # j and (2) z; = z;.”

In this exercise we will formally implement the first part: On a two-taped, non-deterministic Turing
Machine with input #1"# (n > 1), choose non-deterministically ¢ and j such that 0 < ¢,57 < n and
write on the second tape 1°#17 and accept.

If this helps you, you may use a model that allows the head to stay put as well as moving right and
left.

7. We wish to understand the encoding of graphs

(a) Suggest an efficient way to encode an undirected graph G = (V, E) as a string < G >. Describe
the complexity of your encoding as a function of edges and vertices. Draw several graphs and
demonstrate the encoding on the graphs.

(b) Write a program (python or scheme) that takes as an input an encoding < G > of a graph and
an integer k and returns true if the sum of the degrees of the vertices equals to k.

