Computational Models, Spring 2014 Exrecise #6

Turing Machines, \mathcal{P} and \mathcal{NP}

- 1. Show that the following languages are NP-Complete
 - (a) $Partition := \{x_1, \dots x_n \mid \exists S \subseteq [1 \dots n], \sum_{i \in S} x_i = \sum_{i \notin S} x_i \}$
 - (b) $XS := \{x_1, \dots x_n \mid \exists S \subseteq [1 \dots n], \sum_{i \in S} x_i + |\bar{S}| = \sum_{i \in \bar{S}} x_i + |S| \}$
- 2. Show that both of these decision problems are in \mathcal{P}
 - (a) DNF-Satisfability: Given a DNF formula is it satisfiable.
 - (b) CNF-Tautology: Given a CNF formula, is it a tautology (a tautology is a formula which is true in every possible assignment)?
- 3. Consider the following algorithm to solve the vertex cover problem. First, we generate all size-k subsets of the vertices. There are $O(n^k)$ of them. Then we check whether any of the resulting subgraphs is complete. Why is this not a polynomial-time algorithm?
- 4. For the following decision problems, determine whether they are in \mathcal{P} or in \mathcal{NPC} (assuming $\mathcal{P} \neq \mathcal{NP}$). Prove your answer.
 - (a) Input: sets $A_1 ... A_n$, and a number k. Question: does there exist a set C of size k, such that for every $1 \le i \le n$ $A_i \cap C \ne \emptyset$?
 - (b) Input: a 3CNF formula ψ Question: does there exist an assignment that satisfies ψ and gives **True** for exactly 10 variables?
 - (c) Input: a 3CNF formula ψ Question: do there exist at least two assignments that satisfy ψ ?
 - (d) Input: graph G. Question: does there exist a Hamiltonian path in G (between any pair of vertices)?
 - (e) Input: graph G and a number k. Question: does there exist a simple path in G of length $\geq k$?
 - (f) Input: graph G and a number k. Question: is there a Vertex-Cover S in G of size k and an Independent Set, T, of size $\frac{k}{2}$, such that $T \subseteq S$?
- 5. Prove that if $\mathcal{P} = \mathcal{NP}$ then every language in \mathcal{P} , except \emptyset and Σ^* is \mathcal{NPC} . Why can't \emptyset and Σ^* be \mathcal{NPC} .
- 6. Consider the following language:

$$L = \{ \#1^n \# x_1, \dots x_n \mid \exists i, j \ s.t. x_i = x_j \}$$

. A possible way to implement a Turing Machine that accepts the language is as follows: "Choose (non-deterministically) two indices i and j ($0 < i, j \le n$) and write them on a second tape. Now check (using a deterministic TM) if (1) $i \ne j$ and (2) $x_i = x_j$."

In this exercise we will formally implement the first part: On a two-taped, non-deterministic Turing Machine with input $\#1^n\#$ (n > 1), choose non-deterministically i and j such that $0 < i, j \le n$ and write on the second tape $1^i\#1^j$ and accept.

If this helps you, you may use a model that allows the head to stay put as well as moving right and left.

7. We wish to understand the encoding of graphs

- (a) Suggest an efficient way to encode an undirected graph G = (V, E) as a string < G >. Describe the complexity of your encoding as a function of edges and vertices. Draw several graphs and demonstrate the encoding on the graphs.
- (b) Write a program (python or scheme) that takes as an input an encoding < G > of a graph and an integer k and returns true if the sum of the degrees of the vertices equals to k.