Computational Models - Lecture 8¹ Handout Mode

Iftach Haitner and Yishay Mansour.

Tel Aviv University.

April 7 / 23, 2014

¹Based on slides by Benny Chor, Tel Aviv University, modifying slides by Maurice Herlihy, Brown University.

Talk Outline

- Mapping Reductions
- Undecidability by Rice Theorem
- Sipser's book, 5.1–5.3

Section 1

Mapping Reductions

Reminder

We have already

- Established Turing Machines as the gold standard of computers and computability ...
- seen examples of solvable problems ...
- and saw one problem, A_{TM}, that is computationally unsolvable.

 $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that accepts } w \}$

Today, we look at other computationally unsolvable problems via reductions and introduce the techniques of mapping reductions.

Computable Functions

Definition 1 (total computable functions)

A TM *M* computes a total function $f : \Sigma^* \longrightarrow \Sigma^*$, if when starting with an input *w*, *M* halts with (only) f(w) written on tape.^{*a*}

^aThe definition naturally extends to functions of more than one variable, where some special separator symbol indicates end of one variable and beginning of next.

Definition 2 (partially computable functions)

A TM *M* computes a partial function $f: \Sigma^* \longrightarrow (\Sigma^* \cup \bot)$, if when starting with an input *w*:

- if f(w) is defined (i.e., $\neq \perp$), *M* halts with only f(w) on tape,
- if f(w) is undefined, *M* does not halt.

Computable functions are also called (total or partial) recursive functions.

Iftach Haitner and Yishay Mansour (TAU)

Example, 1

Claim 3

All the "usual" arithmetic functions on integers are computable.

These include addition, subtraction, multiplication, division (quotient and remainder), exponentiation, roots (to a specified precision), modular exponentiation, greatest common divisor.

Even non-arithmetic functions, like logarithms and trigonometric functions, can be computed (to a specified precision), using Taylor expansion or other numeric mathematic techniques.

Exercise 4

Design a TM that on input $\langle m, n \rangle$, halts with $\langle m + n \rangle$ on tape.

Example, 2

A useful class of functions modifies TM descriptions. For example:

Question 6

Is the function defined above total? computable?

Example, 3

- Given M = (Q, Σ, Γ, δ, q₀, q_a, q_r) build M' = (Q', Σ, Γ, δ', q₀, q_a, q_r)
 Let Q' = Q ∪ {q*}
- Define δ' as follows:

$$\delta'(\boldsymbol{q}, \sigma) := \begin{cases} (\boldsymbol{q}^*, \sigma, \boldsymbol{R}), & \text{if } \delta(\boldsymbol{q}, \sigma) = (\boldsymbol{q}_r, \cdot, \cdot) \\ (\boldsymbol{q}^*, \sigma, \boldsymbol{R}) & \boldsymbol{q} = \boldsymbol{q}^* \\ (\boldsymbol{q}', \sigma', \boldsymbol{D}), & \text{otherwise if } \delta(\boldsymbol{q}, \sigma) = (\boldsymbol{q}', \sigma', \boldsymbol{D}) \end{cases}$$

Reducibility

- Finding your way around a new city, reduces to ... obtaining a city map.
- Finding the median in an array, reduces to ... sorting an array
- The core idea behind procedures

Reducibility, In Our Context

Involves two problems, *A* and *B*. Desired property: If *A* reduces to *B*, then any solution of *B* can be used to find a solution of *A*.

Remark 7

This property says nothing about solving A by itself or B by itself.

but

Fact 8

If A reduces to B, then A cannot be harder than B

- if **B** is decidable, so is **A**.
- if A is undecidable, then B is undecidable.

We next use reductions and the undecidability of A_{TM} , to show the undecidability of serval problems.

H_{TM} is undecidable

- $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that accepts } w \}$
- $H_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Theorem 9

H_{TM} is undecidable.

Proof: Assume, by way of contradiction, that TM R decides H_{TM} .

Algorithm 10 (S)

On input $\langle M, w \rangle$,

- Emulate R on $\langle M, w \rangle$.
- If R rejects, reject.
- If *R* accepts (meaning *M* halts on *w*), emulate *M* on *w* until it halts (namely run *U* on $\langle M, w \rangle$).
- If M accepted, accept; otherwise reject.

TM S decides A_{TM} , a contradiction \clubsuit What we actually did is a reduction from A_{TM} to H_{TM} .

Iftach Haitner and Yishay Mansour (TAU)

EMPTY_{TM} is Undecidable

```
EMPTY<sub>TM</sub> = {\langle M \rangle | M is a TM and L(M) = \emptyset}
```

Theorem 11 EMPTY_{TM} is undecidable.

Proof's idea: By contradiction:

- Assume EMPTY_{TM} is decidable and let *R* be a TM that decides EMPTY_{TM}.
- Use *R* to construct S, a TM that decides A_{TM}.

Algorithm 12 (S – first attempt)

On input $\langle M, w \rangle$: Emulate $R(\langle M \rangle)$ and reject if *R* accepts.

But what if *R* rejects?

EMPTY_{TM} is Undecidable, 2

Solution? Modify M

```
Definition 13 (M_w)
Given a TM M and input w, define the TM M_w as follows:
On input x,

1 if x \neq w, reject.

2 if x = w, run M on w and accept if M does.
```

M_w either

- accepts just w (in case M accepts w), or
- accepts nothing (otherwise).

EMPTY_{TM} is Undecidable, 3

Definition 14

The language of M_w :

 $L(M_w) := \begin{cases} \{w\}, & \text{M accepts } w, \\ \emptyset, & \text{M does not accept } w \end{cases}$

Question 15

Can a TM construct M_w from $\langle M, w \rangle$?

Answer: Easily, because we need only hardwire w, and add a few extra states to perform the "x = w?" test.

Iftach Haitner and Yishay Mansour (TAU)

Computational Models Lecture 8

EMPTY_{TM} is Undecidable, building M_w

Let $w = w_1, \ldots, w_n$, assume $n \ge 3$.

- Given $M = (Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$ and w build $M_w = (Q', \Sigma, \Gamma, \delta', \overrightarrow{q}_1, q_a, q_r)$
- Let $Q' = Q \cup \{\overrightarrow{q}_1, \ldots, \overrightarrow{q}_{n+1}, \overleftarrow{q}_2, \ldots, \overleftarrow{q}_n\}$
- Define δ' as follows:

$$\delta'(q,\sigma) := \begin{cases} (q_r, \sigma, R) & q = \overrightarrow{q}_i \text{ and } \sigma \neq w_i, \text{ for } i \leq n \\ (\overrightarrow{q}_{i+1}, \sigma, R) & q = \overrightarrow{q}_i \text{ and } \sigma = w_i, \text{ for } i \leq n \\ (q_r, \sigma, R) & q = \overrightarrow{q}_{n+1} \text{ and } \sigma \neq \square, \\ (\overrightarrow{q}_{n}, \sigma, L) & q = \overrightarrow{q}_{n+1} \text{ and } \sigma = \square, \\ (\overrightarrow{q}_{i-1}, \sigma, L) & q = \overleftarrow{q}_i \text{ and } \sigma = w_i, \text{ for } i \geq 3 \\ (q_0, \sigma, L) & q = \overleftarrow{q}_2 \text{ and } \sigma = w_2, \\ (q', \sigma', D), & \text{ otherwise if } \delta(q, \sigma) = (q', \sigma', D) \end{cases}$$

EMPTY_{TM} is Undecidable, 4

- EMPTY_{TM} = { $\langle M \rangle | M$ is a TM and L(M) = \emptyset }
- Assume EMPTY_{TM} is decidable and let *R* be a TM that decides EMPTY_{TM}.

Algorithm 16 (S)

On input $\langle M, w \rangle$

- Construct M_w from M and w.
- 2 Emulate *R* on input $\langle M_w \rangle$.
- If R accepts, reject; if R rejects, accept.

Claim 17

S decides A_{TM}.

A contradiction.

REG_{TM} is Undecidable

 $\mathsf{REG}_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ is a TM and } \mathsf{L}(M) \text{ is regular} \}$

Theorem 18 REG_{TM} is undecidable.

Proof's idea: By contradiction.

- Assume REG_{TM} is decidable and let *R* be a TM that decides REG_{TM}.
- Use R to construct S a TM that decides A_{TM}.

Question 19

But how we construct S?

Intuition: On input $\langle M, w \rangle$, build M_w that accepts regular language iff M accepts w.

TM M_w

- if *M* does not accept *w*, then M_w accepts the (non-regular) language $\{0^{n}1^{n}|n \ge 0\}$
- if *M* accepts *w*, then M_w accepts the (regular) language Σ^* .

Algorithm 20 (M_w)

On input x,

- If x has the form $0^n 1^n$, accept it.
- Otherwise, emulate *M* on input *w* and accept *x* if *M* accepts *w*.

Claim 21

- If *M* does not accept *w*, then M_w accepts (the language) $\{0^n 1^n | n \ge 0\}$.
- If *M* accepts *w*, then M_w accepts (the language) Σ^* .
- **③** The function: **on input** $\langle M, w \rangle$ **output** $\langle M_w \rangle$, is computable.

TM S

Algorithm 22 (S)

On input $\langle M, w \rangle$,

- Construct M_w from M and w.
- 2 Emulate *R* on input $\langle M_w \rangle$, where *R* be a TM that decides REG_{TM}.
- If *R* accepts, accept; if *R* rejects, reject.

Claim 23

S decides A_{TM}.

A contradiction

EQ_{TM} is Undecidable

 $\mathsf{EQ}_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \colon M_1, M_2 \text{ are TMs and } \mathsf{L}(M_1) = \mathsf{L}(M_2) \}$

Theorem 24 EQ_{TM} is undecidable.

We are getting tired of reducing A_{TM} to everything. Let's try instead a reduction from EMPTY_{TM} to EQ_{TM}.

Proof's idea:

- EMPTY_{TM} is the problem of testing whether a TM language is empty.
- EQ_{TM} is the problem of testing whether two TM languages are the same.
- If one of these two TM languages happens to be empty, then we are back to EMPTY_{TM}.
- So EMPTY_{TM} is a special case of EQ_{TM}.

The rest is easy.

EQ_{TM} is Undecidable, 2

• $EQ_{TM} = \{ \langle M_1, M_2 \rangle : M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Assume EQ_{TM} is decidable and let *R* be a TM deciding EQ_{TM}.

Proof:

Algorithm 25 (M_{NO})

On input x, reject

Algorithm 26 (S)

On input $\langle M \rangle$: Emulate *R* on input $\langle M, M_{NO} \rangle$.

If *R* accepts, accept; if *R* rejects, reject.

Claim 27

S decides EMPTY_{TM}.

A contradiction 🐥

Iftach Haitner and Yishay Mansour (TAU)

Bucket of Undecidable Problems

Same techniques prove undecidability of

- Does a TM accept a decidable language?
- Does a TM accept a context-free language?
- Does a TM accept a finite language?
- Does a TM halt on all inputs?
- Is there an input string that causes a TM to traverse all its states?

The Busy Beaver

(taken from http://www.saltine.org/joebeaver1.jpg)

Iftach Haitner and Yishay Mansour (TAU)

Computational Models Lecture 8

The Busy Beaver, 2

We focus on one tape TMs, with $\Sigma = \{0, 1\}$ and $\Gamma = \{0, 1, \bot\}$.

Definition 28 (S_n and BB(n)**)**

For $n \in \mathbb{N}$, let $S_n = \{ all n \text{-state TM's that halt on } \varepsilon \}$. Let BB(*n*) be maximum # of steps taken be some $M \in S_n$ on input ε .

- The set S_n is finite (under standard encoding)
- Every $M \in S_n$ runs for finitely many steps on ε .
- BB(n) is a total function from N to N (in particular, BB(n) ∈ N for every n ∈ N).

Values of BB (size not including accept and reject states):

size	2	3	4	5	6
BB	6	21	107	\geq 47, 176, 870	\geq 7.4 $ imes$ 10 ³⁶⁵³⁴

The Busy Beaver Function is Not Computable

Theorem 29

The busy beaver function is not computable.

Proof: Consider the undecidable language (proved latter) $H_{TM,\varepsilon} = \{\langle M \rangle | M \text{ is a TM and } M \text{ halts on } \varepsilon\}$ BB is computable using *R*.

Algorithm 30 (S)

On input $\langle M \rangle$

- O Compute *m* the number of states in *M*, and compute n = R(m).
- 2 Emulate *M* on ε for n + 1 steps.
- If M halts then accept otherwise reject

Note that if *M* did not halt in n + 1 steps, then it will never halt!

Claim 31 S decides $H_{TM,\varepsilon}$.

The Bounded Busy Beaver Function Is Computable

For $d \in \mathbb{N}$, define the function $BB_d : \mathbb{N} \mapsto \mathbb{N}$ as

$$\mathsf{BB}_d(n) := \left\{ egin{array}{cc} \mathsf{BB}(n), & n \leq d, \\ 0, & ext{otherwise.} \end{array}
ight.$$

Theorem 33

Definition 32

The function BB_d is computable for every $d \in \mathbb{N}$.

Proof's idea: "Hardwire" the values $BB(1) \dots, BB(d)$ into a TM to compute BB_d .

Reducibility

So far, we have seen many examples of reductions from one language to another, but the notion was neither defined nor treated formally.

Reductions play an important role in

- decidability theory (here and now)
- complexity theory (to come)

Time to get formal.

Mapping Reductions

Definition 34

A computable function $f: \Sigma^* \longrightarrow \Sigma^*$ is a reduction from language A to language B, if $w \in A \iff f(w) \in B$, for every $w \in \Sigma^*$.

If a reduction from A to B exists, we say that A is mapping reducible to B, denoted by $A \leq_m B$.

A mapping reduction converts questions about membership in *A* to membership in *B*.

Remark 35

Note that $A \leq_m B \iff \overline{A} \leq_m \overline{B}$

Applications

Theorem 36

If $A \leq_m B$ and B is decidable, then A is decidable.

Proof: Let *M* be the decider for *B*, and *f* a (mapping) reduction from *A* to *B*.

Algorithm 37 (*N*)

On input w

- Compute f(w)
- 2 Emulate M on input f(w) and output whatever M outputs.

÷

Corollary 38

If $A \leq_m B$ and A is undecidable, then B is undecidable.

In fact, this has been our principal tool for proving undecidability of languages other than A_{TM}

Iftach Haitner and Yishay Mansour (TAU)

Computational Models Lecture 8

H_{TM} is Undecidable – Revisited

Recall that

- $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM that accepts } w \}$
- $H_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$

Earlier we proved that H_{TM} undecidable by (de facto) reduction from A_{TM} . Let's reformulate this.

Claim 39

 $A_{TM} \leq_m H_{TM}$

The following computable function *f* establishes $\langle M, w \rangle \in A_{TM} \iff f(\langle M, w \rangle) \in H_{TM}.$

Definition 40 (f)

On input $\langle M, w \rangle$, return $\langle M^{\ell}, w \rangle$. TM M^{ℓ} is defined as follows: On input *x*, emulate M(x) and

accepts if *M* accepts; enters a loop if *M* rejects.

Building *M*^ℓ

We actually already saw this,

- Given $M = (Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$ build $M^{\ell} = (Q', \Sigma, \Gamma, \delta', q_0, q_a, q_r)$
- Let $\mathbf{Q}' = \mathbf{Q} \cup \{\mathbf{q}^*\}$
- Define δ' as follows:

$$\delta'(\boldsymbol{q}, \sigma) := \begin{cases} (\boldsymbol{q}^*, \sigma, \boldsymbol{R}), & \text{if } \delta(\boldsymbol{q}, \sigma) = (\boldsymbol{q}_r, \cdot, \cdot) \\ (\boldsymbol{q}^*, \sigma, \boldsymbol{R}) & \boldsymbol{q} = \boldsymbol{q}^* \\ (\boldsymbol{q}', \sigma', \boldsymbol{D}), & \text{otherwise if } \delta(\boldsymbol{q}, \sigma) = (\boldsymbol{q}', \sigma', \boldsymbol{D}) \end{cases}$$

Note that $L(M^{\ell}) = L(M)$ and $\langle M, w \rangle \in A_{\mathsf{TM}} \iff f(\langle M, w \rangle) \in \mathsf{H}_{\mathsf{TM}}$

$H_{TM,\varepsilon}$ is Undecidable

Recall that

- $H_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ halts on input } w \}$
- $H_{TM,\varepsilon} = \{ \langle M \rangle | M \text{ is a TM and } M \text{ halts on input } \epsilon \}$

Claim 41

 $\mathsf{H}_{\mathsf{TM}} \leq_m \mathsf{H}_{\mathsf{TM},\varepsilon}$

The following computable function *f* establishes $\langle M, w \rangle \in H_{TM} \iff f(\langle M, w \rangle) \in H_{TM,\varepsilon}.$

Definition 42 (*f***)**

```
On input \langle M, w \rangle, return \langle M_w^e \rangle.
TM M_w^e is defined as follows:
On input x, erase x and write w and emulate M(w).
```

Building M^e_w

• Given $M = (Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$ and $w = w_1, \dots, w_n$, build $M_w^e = (Q', \Sigma, \Gamma, \delta', \overrightarrow{q}_1, q_a, q_r)$, assume $n \ge 1$.

• Let
$$\mathbf{Q}' = \mathbf{Q} \cup \{\overline{\mathbf{q}}_1, \dots, \overline{\mathbf{q}}_{n+1}, \overline{\mathbf{q}}, \overline{\mathbf{q}}_1\}$$

• Define δ' as follows:

$$\delta'(q,\sigma) := \begin{cases} (\overrightarrow{q}_2, \$, R) & q = \overrightarrow{q}_1 \\ (\overrightarrow{q}_{i+1}, w_i, R) & q = \overrightarrow{q}_i, 2 \le i \le n \\ (\overrightarrow{q}_{n+1}, \underrightarrow{u}, R) & q = \overrightarrow{q}_{n+1}, \sigma \ne \amalg \\ (\overleftarrow{q}, \sigma, L) & q = \overrightarrow{q}_{n+1}, \sigma = \amalg \\ (\overleftarrow{q}, \sigma, L) & q = \overleftarrow{q}, \sigma \ne \$ \\ (\overleftarrow{q}_1, w_1, R) & q = \overleftarrow{q}_1, \sigma = \$ \\ (q_0, \sigma, L) & q = \overleftarrow{q}_1 \\ (q', \sigma', D), & \text{otherwise if } \delta(q, \sigma) = (q', \sigma', D) \end{cases}$$

$H_{TM,\varepsilon}$ is Undecidable, concluding

For the reduction: M_w^e halts on $\varepsilon \iff M$ halts on w. Therefore, $\langle M \rangle \in H_{TM,\varepsilon} \iff \langle M, w \rangle \in H_{TM}$.

The language of M_w^e :

(Σ*	if M halts and accepts w
$(M_w^e) = \langle$	Ø	if <i>M</i> halts and rejects <i>w</i>
l	Ø	if M does not halts on w

The Mapping Reducible Relation is Not Symmetric

 $H_{TM,\varepsilon} = \{ \langle M \rangle | M \text{ is a TM and } M \text{ halts on } \varepsilon \}$

Claim 43 Let $L = \{0^n : n \in \mathbb{N}\}$. Then $L \leq_m H_{TM,\varepsilon}$, but $H_{TM,\varepsilon} \not\leq_m L$

Proof: It is clear that $H_{TM,\varepsilon} \leq_m L$ (why?). For proving $L \leq_m H_{TM,\varepsilon}$, define *f* as follows:

Definition 44 (f)

On input w. Return $\langle M_H \rangle$ if $w \in L$, and return $\langle M_L \rangle$ otherwise.

Where M_H halts on ε , and M_L loops on ε .

Enumerability

Theorem 45

If $A \leq_m B$ and B is enumerable, then A is enumerable.

Proof is same as before, using accepters instead of deciders.

Corollary 46 If $A \leq_m B$ and A is not enumerable, then B is not enumerable.

TM Equality

 $\mathsf{EQ}_{\mathsf{TM}} = \{ \langle M_1, M_2 \rangle \colon M_1, M_2 \text{ are TMs and } \mathsf{L}(M_1) = \mathsf{L}(M_2) \}$

Theorem 47

Both EQ_{TM} and, its complement, EQ_{TM} , are not enumerable.

Stated differently, EQ_{TM} is neither enumerable nor co-enumerable, or $EQ_{TM} \notin \mathcal{RE} \cup co-\mathcal{RE}$.

We show that

- $A_{TM} \leq_m EQ_{TM}$, and $A_{TM} \leq_m \overline{EQ_{TM}}$.
- It follows that $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$ and $\overline{A_{TM}} \leq_m EQ_{TM}$ (why?)
- Hence, neither EQ_{TM} nor $\overline{EQ_{TM}}$ are enumerable.

$A_{TM} \leq_m EQ_{TM}$

Claim 48 А_{тм} <_m ЕQ_{тм}.

Definition 49 (f)

On input $\langle M, w \rangle$

Construct a machine M₁ that accepts Σ*

Construct a machine M_2 (= M_w^e) that accepts x, if M(w) accepts.

3 Return $\langle M_1, M_2 \rangle$.

Note

- if *M* accepts *w*, then *M*₂ accepts everything. Otherwise, *M*₂ accepts nothing.
- Hence, $\langle M, w \rangle \in A_{\mathsf{TM}} \iff \langle M_1, M_2 \rangle \in \mathsf{EQ}_{\mathsf{TM}}.$

$A_{TM} \leq_m \overline{EQ_{TM}}$

Claim 50	CI	air	n (50
----------	----	-----	-----	----

 $A_{TM} \leq_m \overline{EQ_{TM}}.$

Definition 51 (f)

On input $\langle M, w \rangle$:

- Construct a machine M_2 (= M_w^e) that accepts x, if M(w) accepts.
- 3 Return $\langle M_1, M_2 \rangle$.

Note

• If *M* accepts *w* then *M*₂ accepts everything. Otherwise, *M*₂ accepts nothing.

• Hence,
$$\langle M, w \rangle \in \mathsf{A}_{\mathsf{TM}} \Longleftrightarrow \langle M_1, M_2 \rangle \in \overline{\mathsf{EQ}_{\mathsf{TM}}}$$

TM Equality, Summary

- Since $A_{TM} \leq_m EQ_{TM}$, then $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$
- Since $A_{TM} \leq_m \overline{EQ_{TM}}$ then $\overline{A_{TM}} \leq_m EQ_{TM}$
- Hence, neither EQ_{TM} nor $\overline{EQ_{TM}}$ are enumerable.
- Stated differently, EQ_{TM} is neither enumerable nor co-enumerable, or EQ_{TM} ∉ *RE* ∪ *co*−*RE*.

Section 2

Rice's Theorem

Non Trivial Properties of \mathcal{RE} Languages

- A few examples
 - L is finite.
 - L is infinite.
 - L contains the empty string.
 - L contains no prime number.
 - L is co-finite.

• . . .

All these are non-trivial properties of enumerable languages, since for each of them there is $L_1, L_2 \in \mathcal{RE}$ such that L_1 satisfies the property but L_2 does not.

Question 52

Are there any trivial properties of \mathcal{RE} languages?

Rice's Theorem

Theorem 53

Let C be a proper non-empty subset of the set of \mathcal{RE} and let $L_C = \{ \langle M \rangle \colon L(M) \in C \}$. Then L_C is undecidable.

Proof's idea: Reduction from H_{TM} .

Given *M* and *w*, we construct M_0 such that:

- If *M* halts on *w*, then $\langle M_0 \rangle \in L_C$.
- If *M* does not halt on *w*, then $\langle M_0 \rangle \notin L_C$.

Proving Rice's Theorem

We assume wlg. that $\emptyset \notin C$ (otherwise, look at \overline{C} , also proper and non-empty). Fix $I \in C$ and let M be a TM according it (recall $C \in \mathcal{P}S$)

Fix $L \in C$ and let M_L be a TM accepting it (recall $C \subseteq \mathcal{RE}$).

Let $f(\langle M, w \rangle) := \langle M_0 \rangle$, and let $f(x) = \emptyset$ if x is not of the form $\langle M, w \rangle$.

Claim 55

f is a mapping reduction from H_{TM} to L_C

f is Computable

Claim 56

f is computable.

Proof: On a valid pair $\langle M, w \rangle$, the TM $M_0 = f(\langle M, w \rangle)$ is simply a concatenation of two known TMs: the universal machine and M_L .

 $\langle M, w \rangle \in \mathsf{H}_{\mathsf{TM}} \Longleftrightarrow f(\langle M, w \rangle) \in \mathsf{L}_{\mathcal{C}}$

Claim 57

 $\langle M, w \rangle \in \mathsf{H}_{\mathsf{TM}} \Longleftrightarrow f(\langle M, w \rangle) \in \mathsf{L}_{\mathcal{C}}$

(Hence, *f* is a mapping reduction from H_{TM} to L_C)

Proof:

- If $\langle M, w \rangle \in H_{TM}$, then M_0 gets to Step 2, and emulates $M_L(y)$. Hence $L(M_0) = L \in C$.
- Otherwise (i.e., ⟨M, w⟩ ∉ H_{TM}), M₀ never gets to Step 2. Hence L(M₀) = Ø ∉ C.
- Thus, $\langle M, w \rangle \in H_{\mathsf{TM}}$ iff $\langle M_0 \rangle \in L_{\mathcal{C}}$.

÷

We proved that $H_{TM} \leq_m L_C$, thus L_C is undecidable.

Reflections

- Rice's theorem can be used to show undecidability of properties like
 - Does L(M) contain infinitely many primes
 - Does L(M) contain an arithmetic progression of length 15
 - Is L(M) empty
- Decidability of properties related to the encoding itself cannot be inferred from Rice.
 - The question does $\langle M \rangle$ has an even number of states is decidable.
 - The question does *M* reaches state q₆ on the empty input string is undecidable, but this does not follow from Rice's theorem.
- Rice does not say anything on membership in *RE* of questions like is L(M) finite.
- Rice's Theorem is a powerful tool, but use it with care!