
Computational Models - Lecture 8 1

Handout Mode

Iftach Haitner and Yishay Mansour.

Tel Aviv University.

April 7 / 23 , 2014

1
Based on slides by Benny Chor, Tel Aviv University, modifying slides by Maurice Herlihy, Brown University.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 1 / 47

Talk Outline

Mapping Reductions

Undecidability by Rice Theorem

Sipser’s book, 5.1–5.3

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 2 / 47

Section 1

Mapping Reductions

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 3 / 47

Reminder

We have already

Established Turing Machines as the gold standard of computers
and computability . . .

seen examples of solvable problems . . .

and saw one problem, ATM, that is computationally unsolvable.

ATM = {〈M,w〉|M is a TM that accepts w}

Today, we look at other computationally unsolvable problems via
reductions and introduce the techniques of mapping reductions.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 4 / 47

Computable Functions

Definition 1 (total computable functions)

A TM M computes a total function f : Σ∗ −→ Σ∗, if when starting with
an input w , M halts with (only) f (w) written on tape.a

aThe definition naturally extends to functions of more than one variable,
where some special separator symbol indicates end of one variable and
beginning of next.

Definition 2 (partially computable functions)

A TM M computes a partial function f : Σ∗ −→ (Σ∗∪ ⊥), if when
starting with an input w :

if f (w) is defined (i.e., 6=⊥), M halts with only f (w) on tape,

if f (w) is undefined, M does not halt.

Computable functions are also called (total or partial) recursive
functions.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 5 / 47

Example, 1

Claim 3
All the “usual” arithmetic functions on integers are computable.

These include addition, subtraction, multiplication, division (quotient
and remainder), exponentiation, roots (to a specified precision),
modular exponentiation, greatest common divisor.

Even non-arithmetic functions, like logarithms and trigonometric
functions, can be computed (to a specified precision), using Taylor
expansion or other numeric mathematic techniques.

Exercise 4
Design a TM that on input 〈m,n〉, halts with 〈m + n〉 on tape.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 6 / 47

Example, 2

A useful class of functions modifies TM descriptions. For example:

Algorithm 5

On input w :
If w = 〈M〉 for some TM, construct 〈M ′〉, where

L(M ′) = L(M), and

M ′ does not halt for w 6∈ L(M ′)

Question 6
Is the function defined above total? computable?

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 7 / 47

Example, 3

Given M = (Q,Σ, Γ, δ,q0,qa,qr) build M ′ = (Q′,Σ, Γ, δ′,q0,qa,qr)

Let Q′ = Q ∪ {q∗}

Define δ′ as follows:

δ′(q, σ) :=







(q∗, σ,R), if δ(q, σ) = (qr , ·, ·)
(q∗, σ,R) q = q∗

(q′, σ′,D), otherwise if δ(q, σ) = (q′, σ′,D)

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 8 / 47

Reducibility

Finding your way around a new city, reduces to . . .
obtaining a city map.

Finding the median in an array, reduces to . . . sorting an array

The core idea behind procedures

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 9 / 47

Reducibility, In Our Context

Involves two problems, A and B.
Desired property: If A reduces to B, then any solution of B can be used
to find a solution of A.

Remark 7
This property says nothing about solving A by itself or B by itself.

but

Fact 8
If A reduces to B, then A cannot be harder than B

if B is decidable, so is A.

if A is undecidable, then B is undecidable.

We next use reductions and the undecidability of ATM, to show the
undecidability of serval problems.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 10 / 47

HTM is undecidable

ATM = {〈M,w〉|M is a TM that accepts w}
HTM = {〈M,w〉|M is a TM and M halts on input w}

Theorem 9
HTM is undecidable.

Proof: Assume, by way of contradiction, that TM R decides HTM.

Algorithm 10 (S)

On input 〈M,w〉,
1 Emulate R on 〈M,w〉.
2 If R rejects, reject.
3 If R accepts (meaning M halts on w), emulate M on w until it halts

(namely run U on 〈M,w〉).
4 If M accepted, accept; otherwise reject.

TM S decides ATM, a contradiction ♣
What we actually did is a reduction from ATM to HTM.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 11 / 47

EMPTYTM is Undecidable

EMPTYTM = {〈M〉|M is a TM and L(M) = ∅}

Theorem 11
EMPTYTM is undecidable.

Proof’s idea: By contradiction:

Assume EMPTYTM is decidable and let R be a TM that decides
EMPTYTM.

Use R to construct S, a TM that decides ATM.

Algorithm 12 (S – first attempt)

On input 〈M,w〉:
Emulate R(〈M〉) and reject if R accepts.

But what if R rejects?

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 12 / 47

EMPTYTM is Undecidable, 2

Solution? Modify M

Definition 13 (Mw)

Given a TM M and input w , define the TM Mw as follows:
On input x ,

1 if x 6= w , reject.
2 if x = w , run M on w and accept if M does.

Mw either

accepts just w (in case M accepts w), or

accepts nothing (otherwise).

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 13 / 47

EMPTYTM is Undecidable, 3

Definition 14
The language of Mw :

L(Mw) :=

{

{w}, M accepts w,
∅, M does not accept w

Question 15
Can a TM construct Mw from 〈M,w〉?

Answer: Easily, because we need only hardwire w , and add a few
extra states to perform the “x = w?′′ test.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 14 / 47

EMPTYTM is Undecidable, building Mw

Let w = w1, . . .wn, assume n ≥ 3.

Given M = (Q,Σ, Γ, δ,q0,qa,qr) and w build
Mw = (Q′,Σ, Γ, δ′,

−→q 1,qa,qr)

Let Q′ = Q ∪ {−→q 1, . . . ,
−→q n+1,

←−q 2, . . . ,
←−q n}

Define δ′ as follows:

δ′(q, σ) :=











































(qr , σ,R) q =
−→q i and σ 6= wi , for i ≤ n

(
−→q i+1, σ,R) q =

−→q i and σ = wi , for i ≤ n
(qr , σ,R) q =

−→q n+1 and σ 6= ,

(
←−q n, σ,L) q =

−→q n+1 and σ = ,

(
←−q i−1, σ,L) q =

←−q i and σ = wi , for i ≥ 3
(q0, σ,L) q =

←−q 2 and σ = w2,
(q′, σ′,D), otherwise if δ(q, σ) = (q′, σ′,D)

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 15 / 47

EMPTYTM is Undecidable, 4

EMPTYTM = {〈M〉|M is a TM and L(M) = ∅}

Assume EMPTYTM is decidable and let R be a TM that decides
EMPTYTM.

Algorithm 16 (S)

On input 〈M,w〉
1 Construct Mw from M and w .
2 Emulate R on input 〈Mw 〉.
3 If R accepts, reject; if R rejects, accept.

Claim 17
S decides ATM.

A contradiction. ♣

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 16 / 47

REGTM is Undecidable

REGTM = {〈M〉|M is a TM and L(M) is regular}

Theorem 18
REGTM is undecidable.

Proof’s idea: By contradiction.

Assume REGTM is decidable and let R be a TM that decides
REGTM.

Use R to construct S – a TM that decides ATM.

Question 19
But how we construct S?

Intuition: On input 〈M,w〉, build Mw that accepts regular language iff M
accepts w .

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 17 / 47

TM Mw

if M does not accept w , then Mw accepts the (non-regular)
language {0n1n|n ≥ 0}

if M accepts w , then Mw accepts the (regular) language Σ∗ .

Algorithm 20 (Mw)

On input x ,
1 If x has the form 0n1n, accept it.
2 Otherwise, emulate M on input w and accept x if M accepts w .

Claim 21
1 If M does not accept w , then Mw accepts (the language)
{0n1n|n ≥ 0}.

2 If M accepts w , then Mw accepts (the language) Σ∗.
3 The function: on input 〈M,w〉 output 〈Mw〉, is computable.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 18 / 47

TM S

Algorithm 22 (S)

On input 〈M,w〉,
1 Construct Mw from M and w .
2 Emulate R on input 〈Mw 〉, where R be a TM that decides REGTM.
3 If R accepts, accept; if R rejects, reject.

Claim 23
S decides ATM.

A contradiction ♣

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 19 / 47

EQTM is Undecidable

EQTM = {〈M1,M2〉 : M1,M2 are TMs and L(M1) = L(M2)}

Theorem 24
EQTM is undecidable.

We are getting tired of reducing ATM to everything.
Let’s try instead a reduction from EMPTYTM to EQTM.

Proof’s idea:
EMPTYTM is the problem of testing whether a TM language is
empty.
EQTM is the problem of testing whether two TM languages are the
same.
If one of these two TM languages happens to be empty, then we
are back to EMPTYTM.
So EMPTYTM is a special case of EQTM.

The rest is easy.
Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 20 / 47

EQTM is Undecidable, 2

EQTM = {〈M1,M2〉 : M1,M2 are TMs and L(M1) = L(M2)}

Assume EQTM is decidable and let R be a TM deciding EQTM.

Proof:

Algorithm 25 (MNO)

On input x , reject

Algorithm 26 (S)

On input 〈M〉:
Emulate R on input 〈M,MNO〉.

If R accepts, accept; if R rejects, reject.

Claim 27
S decides EMPTYTM.

A contradiction ♣
Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 21 / 47

Bucket of Undecidable Problems

Same techniques prove undecidability of

Does a TM accept a decidable language?

Does a TM accept a context-free language?

Does a TM accept a finite language?

Does a TM halt on all inputs?

Is there an input string that causes a TM to traverse all its states?

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 22 / 47

The Busy Beaver

(taken from http://www.saltine.org/joebeaver1.jpg)

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 23 / 47

The Busy Beaver , 2

We focus on one tape TMs, with Σ = {0,1} and Γ = {0,1, }.

Definition 28 (Sn and BB(n))

For n ∈ N, let Sn = {all n-state TM’s that halt on ε}.
Let BB(n) be maximum # of steps taken be some M ∈ Sn on input ε.

The set Sn is finite (under standard encoding)

Every M ∈ Sn runs for finitely many steps on ε .

BB(n) is a total function from N to N (in particular, BB(n) ∈ N for
every n ∈ N).

Values of BB (size not including accept and reject states):

size 2 3 4 5 6
BB 6 21 107 ≥ 47,176,870 ≥ 7.4× 1036534

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 24 / 47

The Busy Beaver Function is Not Computable

Theorem 29
The busy beaver function is not computable.

Proof: Consider the undecidable language (proved latter)
HTM,ε = {〈M〉|M is a TM and M halts on ε}
BB is computable using R.

Algorithm 30 (S)

On input 〈M〉
1 Compute m the number of states in M, and compute n= R(m).
2 Emulate M on ε for n + 1 steps.
3 If M halts then accept otherwise reject

Note that if M did not halt in n + 1 steps, then it will never halt!

Claim 31
S decides HTM,ε.

♣Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 25 / 47

The Bounded Busy Beaver Function Is Computable

Definition 32
For d ∈ N, define the function BBd : N 7→ N as

BBd(n) :=
{

BB(n), n ≤ d ,
0, otherwise.

Theorem 33
The function BBd is computable for every d ∈ N.

Proof’s idea: “Hardwire" the values BB(1) . . . ,BB(d) into a TM to
compute BBd .

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 26 / 47

Reducibility

So far, we have seen many examples of reductions from one language
to another, but the notion was neither defined nor treated formally.

Reductions play an important role in

decidability theory (here and now)

complexity theory (to come)

Time to get formal.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 27 / 47

Mapping Reductions

Definition 34
A computable function f : Σ∗ −→ Σ∗ is a reduction from language A to
language B, if w ∈ A⇐⇒ f (w) ∈ B, for every w ∈ Σ∗.

If a reduction from A to B exists, we say that A is mapping reducible to
B, denoted by A ≤m B.

A mapping reduction converts questions about membership in A to
membership in B.

Remark 35

Note that A ≤m B ⇐⇒ A ≤m B

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 28 / 47

Applications

Theorem 36
If A ≤m B and B is decidable, then A is decidable.

Proof: Let M be the decider for B, and f a (mapping) reduction from A
to B.

Algorithm 37 (N)

On input w
1 Compute f (w)

2 Emulate M on input f (w) and output whatever M outputs.

♣

Corollary 38

If A ≤m B and A is undecidable, then B is undecidable.

In fact, this has been our principal tool for proving undecidability of
languages other than ATM

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 29 / 47

HTM is Undecidable – Revisited
Recall that

ATM = {〈M,w〉|M is a TM that accepts w}
HTM = {〈M,w〉|M is a TM and M halts on input w}

Earlier we proved that HTM undecidable by (de facto) reduction from
ATM. Let’s reformulate this.

Claim 39
ATM ≤m HTM

The following computable function f establishes
〈M,w〉 ∈ ATM ⇐⇒ f (〈M,w〉) ∈ HTM.

Definition 40 (f)

On input 〈M,w〉, return 〈Mℓ,w〉.
TM Mℓ is defined as follows:
On input x , emulate M(x) and

accepts if M accepts; enters a loop if M rejects.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 30 / 47

Building Mℓ

We actually already saw this,

Given M = (Q,Σ, Γ, δ,q0,qa,qr) build Mℓ = (Q′,Σ, Γ, δ′,q0,qa,qr)

Let Q′ = Q ∪ {q∗}

Define δ′ as follows:

δ′(q, σ) :=







(q∗, σ,R), if δ(q, σ) = (qr , ·, ·)
(q∗, σ,R) q = q∗

(q′, σ′,D), otherwise if δ(q, σ) = (q′, σ′,D)

Note that L(Mℓ) = L(M) and 〈M,w〉 ∈ ATM ⇐⇒ f (〈M,w〉) ∈ HTM

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 31 / 47

HTM,ε is Undecidable

Recall that

HTM = {〈M,w〉|M is a TM and M halts on input w}

HTM,ε = {〈M〉|M is a TM and M halts on input ǫ}

Claim 41
HTM ≤m HTM,ε

The following computable function f establishes
〈M,w〉 ∈ HTM ⇐⇒ f (〈M,w〉) ∈ HTM,ε.

Definition 42 (f)

On input 〈M,w〉, return 〈Me
w〉.

TM Me
w is defined as follows:

On input x , erase x and write w and emulate M(w).

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 32 / 47

Building Me
w

Given M = (Q,Σ, Γ, δ,q0,qa,qr) and w = w1, . . .wn, build
Me

w = (Q′,Σ, Γ, δ′,
−→q 1,qa,qr), assume n ≥ 1.

Let Q′ = Q ∪ {−→q 1, . . .
−→q n+1,

←−q ,
←−q 1}

Define δ′ as follows:

δ′(q, σ) :=



















































(
−→q 2, $,R) q =

−→q 1

(
−→q i+1,wi ,R) q =

−→q i ,2 ≤ i ≤ n
(
−→q n+1, ,R) q =

−→q n+1, σ 6=
(
←−q , σ,L) q =

−→q n+1, σ =

(
←−q , σ,L) q =

←−q , σ 6= $

(
←−q 1,w1,R) q =

←−q , σ = $

(q0, σ,L) q =
←−q 1

(q′, σ′,D), otherwise if δ(q, σ) = (q′, σ′,D)

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 33 / 47

HTM,ε is Undecidable, concluding

For the reduction: Me
w halts on ε⇐⇒ M halts on w .

Therefore, 〈M〉 ∈ HTM,ε ⇔ 〈M,w〉 ∈ HTM.

The language of Me
w :

L(Me
w) =







Σ∗ if M halts and accepts w
∅ if M halts and rejects w
∅ if M does not halts on w

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 34 / 47

The Mapping Reducible Relation is Not Symmetric

HTM,ε = {〈M〉|M is a TM and M halts on ε}

Claim 43

Let L = {0n : n ∈ N}. Then L ≤m HTM,ε, but HTM,ε �m L

Proof: It is clear that HTM,ε �m L (why?).
For proving L ≤m HTM,ε, define f as follows:

Definition 44 (f)

On input w . Return 〈MH〉 if w ∈ L, and return 〈ML〉 otherwise.

Where MH halts on ε, and ML loops on ε.

♣

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 35 / 47

Enumerability

Theorem 45
If A ≤m B and B is enumerable, then A is enumerable.

Proof is same as before, using accepters instead of deciders.

Corollary 46

If A ≤m B and A is not enumerable, then B is not enumerable.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 36 / 47

TM Equality

EQTM = {〈M1,M2〉 : M1,M2 are TMs and L(M1) = L(M2)}

Theorem 47

Both EQTM and, its complement, EQTM, are not enumerable.

Stated differently, EQTM is neither enumerable nor co-enumerable, or
EQTM /∈ RE ∪ co−RE .

We show that

ATM ≤m EQTM, and ATM ≤m EQTM.

It follows that ATM ≤m EQTM and ATM ≤m EQTM (why?)

Hence, neither EQTM nor EQTM are enumerable.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 37 / 47

ATM ≤m EQTM

Claim 48
ATM ≤m EQTM.

Definition 49 (f)

On input 〈M,w〉
1 Construct a machine M1 that accepts Σ∗

2 Construct a machine M2 (= Me
w) that accepts x , if M(w) accepts.

3 Return 〈M1,M2〉.

Note

if M accepts w , then M2 accepts everything. Otherwise, M2

accepts nothing.

Hence, 〈M,w〉 ∈ ATM ⇐⇒ 〈M1,M2〉 ∈ EQTM.

♣

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 38 / 47

ATM ≤m EQTM

Claim 50

ATM ≤m EQTM.

Definition 51 (f)

On input 〈M,w〉:

1 Construct a machine M1that accepts ∅.
2 Construct a machine M2 (= Me

w) that accepts x , if M(w) accepts.
3 Return 〈M1,M2〉.

Note

If M accepts w then M2 accepts everything. Otherwise, M2

accepts nothing.

Hence, 〈M,w〉 ∈ ATM ⇐⇒ 〈M1,M2〉 ∈ EQTM

♣

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 39 / 47

TM Equality, Summary

Since ATM ≤m EQTM, then ATM ≤m EQTM

Since ATM ≤m EQTM then ATM ≤m EQTM

Hence, neither EQTM nor EQTM are enumerable.

Stated differently, EQTM is neither enumerable nor co-enumerable,
or EQTM /∈ RE ∪ co−RE .

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 40 / 47

Section 2

Rice’s Theorem

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 41 / 47

Non Trivial Properties of RE Languages

A few examples

L is finite.

L is infinite.

L contains the empty string.

L contains no prime number.

L is co-finite.

. . .
All these are non-trivial properties of enumerable languages, since for
each of them there is L1,L2 ∈ RE such that L1 satisfies the property
but L2 does not.

Question 52
Are there any trivial properties of RE languages?

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 42 / 47

Rice’s Theorem

Theorem 53
Let C be a proper non-empty subset of the set of RE and let
LC = {〈M〉 : L(M) ∈ C}. Then LC is undecidable.

Proof’s idea: Reduction from HTM.

Given M and w , we construct M0 such that:

If M halts on w , then 〈M0〉 ∈ LC .

If M does not halt on w , then 〈M0〉 6∈ LC .

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 43 / 47

Proving Rice’s Theorem

We assume wlg. that ∅ 6∈ C (otherwise, look at C, also proper and
non-empty).
Fix L ∈ C and let ML be a TM accepting it (recall C ⊆ RE).

Algorithm 54 (M0)

On input y :
1 Emulate M(w).
2 Emulate ML(y):

Accept if ML accepts; reject if ML rejects.

Let f (〈M,w〉) := 〈M0〉, and let f (x) = ∅ if x is not of the form 〈M,w〉.

Claim 55
f is a mapping reduction from HTM to LC

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 44 / 47

f is Computable

Claim 56
f is computable.

Proof: On a valid pair 〈M,w〉, the TM M0 = f (〈M,w〉) is simply a
concatenation of two known TMs: the universal machine and ML. ♣

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 45 / 47

〈M,w〉 ∈ HTM ⇐⇒ f (〈M,w〉) ∈ LC

Claim 57
〈M,w〉 ∈ HTM ⇐⇒ f (〈M,w〉) ∈ LC

(Hence, f is a mapping reduction from HTM to LC)

Proof:

If 〈M,w〉 ∈ HTM, then M0 gets to Step 2, and emulates ML(y).
Hence L(M0) = L ∈ C.

Otherwise (i.e., 〈M,w〉 6∈ HTM), M0 never gets to Step 2.
Hence L(M0) = ∅ /∈ C.

Thus, 〈M,w〉 ∈ HTM iff 〈M0〉 ∈ LC .

♣

We proved that HTM ≤m LC , thus LC is undecidable.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 46 / 47

Reflections

Rice’s theorem can be used to show undecidability of properties
like

◮ Does L(M) contain infinitely many primes
◮ Does L(M) contain an arithmetic progression of length 15
◮ Is L(M) empty

Decidability of properties related to the encoding itself cannot be
inferred from Rice.

◮ The question does 〈M〉 has an even number of states is decidable.
◮ The question does M reaches state q6 on the empty input string is

undecidable, but this does not follow from Rice’s theorem.

Rice does not say anything on membership in RE of questions like
is L(M) finite.

Rice’s Theorem is a powerful tool, but use it with care!

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 8 April 7 / 23 , 2014 47 / 47

	Mapping Reductions
	Rice's Theorem

