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Computational Models - Lecture 3

The programs in the homework should be written in
Python/Scheme.

Non-regular languages: two approaches
1 Pumping Lemma
2 Myhill-Nerode Theorem (not in Sipser’s book)

Closure properties

Algorithmic questions for NFAs

Sipser, 1.4,2.1,2.2

Hopcroft and Ullman, 3.4

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 2 / 37



Proved Last Time

Theorem 1
A language is described by a regular expression, iff it is regular.

We have made a lot of progress understanding what finite automata
can do, but what they cannot do?
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Negative Results

Is there a DFA that accepting

B = {0n1n : n ≥ 0}

C = {w : #1(w) = #0(w)}

D = {w : #01(w) = #10(w)}

#s(w) – the number of times s appears in w .
All languages are over {0,1}.

Consider B:

DFA must “remember” how many 0’s it has seen

Impossible with finite state.

The others languages seem to be exactly the same...

Question: Is this a proof?

Answer: No, D is regular.....
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Part I

Pumping Lemma

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 5 / 37



Regular languages can be pumped

For any regular language L there exists ℓ > 0 (the pumping length) s.t.:
Any s ∈ L longer than ℓ, can be “pumped” into a longer string in L.

This is a powerful technique for showing that a language is not regular.
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The Pumping Lemma

Lemma 2
For any regular language L, exists ℓ > 0 (the pumping length) s.t.:
every s ∈ L with |s| ≥ ℓ can be written as s = xyz such that:

1 xy i z ∈ L for every i ≥ 0,
2 |y | > 0, and
3 |xy | ≤ ℓ.

Remarks: Without the second condition, the theorem would be trivial.

The third condition is technical and sometimes useful.
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Proving the Pumping Lemma

Let M = (Q,Σ, δ,q1,F ) be a DFA accepting L, and let ℓ = |Q|.

Let s ∈ L be with |s| ≥ ℓ, and consider the sequence of states M
traverse as it reads s = s1 . . . sn:

s1 s2 s3 s4 s5 s6 . . . sn
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

q1 q20 q9 q17 q12 q13 q9 q2 q5∈ F

By the pigeonhole principle, at least one of the states in the above
sequence repeats. (?)
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Proving the Pumping Lemma, cont.

Let q9 be the repeating state.

Write s = xyz

q1

q9

q5
x

y

z

By inspection, M accepts xyk z for every k ≥ 0.

|y | > 0, because the state q9 is repeated.

To ensure that |xy | ≤ ℓ, pick first state repetition, which must occur
no later than ℓ+ 1 states in sequence.
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Application # 1

Corollary 3

B = {0n1n : n > 0} is not regular.

Proof: By contradiction. Suppose B is regular and let ℓ be its pumping
length.

Consider the string s = 0ℓ1ℓ ∈ B.
Let x , y , z be (one possible) strings guaranteed by the pumping
lemma (i.e., s = xyz)

1 xy iz ∈ B for every k ≥ 0,
2 |y | > 0, and
3 |xy | ≤ ℓ.

If y is all 0, then xy2z has too many 0’s.
If y is all 1, then xy2z has too many 1’s.
If y is mixed, then xy2z is not of right form. ♣

We did not use the third property.
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Application # 2

Corollary 4

C = {w : #1(w) = #0(w)} is not regular.

Proof: By contradiction. Suppose C is regular. Let ℓ be the pumping
length.

Consider the string s = 0ℓ1ℓ ∈ C.

Let x , y , z be (one possible) strings guaranteed by the pumping
lemma (i.e., s = xyz)

1 xy iz ∈ B for every k ≥ 0,
2 |y | > 0, and
3 |xy | ≤ ℓ.

Since |xy | ≤ ℓ, the string y is all 0’s.

Thus, xy2z /∈ C (more 0’s than 1’s). ♣

Could we have used s = (01)ℓ?
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Application # 3

Corollary 5

E = {0i1j : i > j} is not regular.

Proof: By contradiction. Suppose E is regular. Let ℓ be its pumping
length.

Consider the string s = 0ℓ1ℓ−1 ∈ E .

By pumping lemma, s = xyz, where xyk z ∈ E for every k ≥ 0,
|y | > 0 and |xy | ≤ ℓ.

But xy0z = xz /∈ E (at least as much 1’s as 0’s) ♣
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Application # 4

Corollary 6

The language Primes ⊂ {0,1}∗ – all strings whose length is a prime
number – is not regular.

Proof: Suppose Primes is regular accepted by DFA M, and let ℓ be its
pumping length.

Let s = 1p ∈ Primes, where p ≥ ℓ is a prime (?)

By pumping lemma, s = xyz, where xyk z ∈ Primes for every
k ≥ 0.

Let |y | = m. Hence, xyp+1z = 1p+mp ∈ Primes

but p(m + 1) is not prime... ♣
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Another Example

Consider the language L = {aibncn : n ≥ 0, i ≥ 1} ∪ {bncm : n,m ≥ 0}.

Any s ∈ L can be pumped:

If s = aibncn, then set x = ε and y = a.

If s = bncm, then set x = ε and y = b.

If s = cm, then set x = ε and y = c.

(in all cases z is set arbitrarily).

Is L regular? No

How can we prove it?
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Part II

Characterization of Regular Languages
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The equivalence relation L
∼

Definition 7

For L ⊆ Σ∗, define the equivalence relation L
∼ over words in Σ∗, by

x L
∼y if for every z ∈ Σ∗, it holds that xz ∈ L ⇐⇒ yz ∈ L.

It is easy to see that L
∼ is indeed an equivalence relation (reflexive,

symmetric, transitive) on Σ∗.
Hence, L

∼ partitions Σ∗ into equivalence classes.

For x ∈ Σ∗, let [x ] ⊆ Σ∗ denote its equivalence class with respect to L
∼

How many equivalence classes does L
∼ induce? finite or infinite?

Could be either (depends on L).

Fact 8 (right invariance)

If x L
∼ y, then xw L

∼ yw for every w ∈ Σ∗
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Three Examples

L1 = {w : #1(w) mod 4 = 0}
L1∼ has finitely many equivalence classes.

The equivalent classes are: [1], [11], [111], [1111]

L2 = {0n1n : n ∈ N}
L2∼ has infinitely many equivalence classes.

[0] 6= [02] 6= [03] . . .

L3 = {aibncn : n ≥ 0, i ≥ 1} ∪ {bncm : n,m ≥ 0}
L3∼ has infinitely many equivalence classes.

[ab] 6= [ab2] 6= [ab3] 6= . . .

The above statements required a proof...
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Myhill-Nerode Theorem

Theorem 9 (Myhill-Nerode Theorem)

L ⊆ Σ∗ is regular iff L
∼ finitely many equivalence classes.

Hence

L1 = {w ∈ {0,1}∗ : #1(w) mod 4 = 0} is regular.

L2 = {0n1n : n ∈ N} is not regular.

L3 = {aibncn : n ≥ 0, i ≥ 1} ∪ {bncm : n,m ≥ 0} is not regular.
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Proving Myhill-Nerode Theorem =⇒

Let L be a regular language and let M = (Q,Σ, δ,q0,F ) be a DFA
accepting it.

Define the binary relation M
∼ by x M

∼ y if δ̂(q0, x) = δ̂(q0, y).
M
∼ is an equivalence relation.

x M
∼ y =⇒ xz M

∼ yz for every z ∈ Σ∗.

=⇒ xz ∈ L iff yz ∈ L.

Hence, x M
∼ y =⇒ x L

∼ y .

Each equivalence class of L
∼ corresponds to union of classes of M

∼.
Namely, M

∼ is a refinement of L
∼. (see drawing on board)

Specifically, # of equivalence classes of L
∼ is less or equal than #

of equivalence classes of M
∼.

M
∼ has finitely many equivalence classes. (?)

Therefore, L
∼ has finitely many equivalence classes. ♠

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 19 / 37



Proving Myhill-Nerode Theorem ⇐=
Assume L

∼ has finitely many equivalence classes and let x1, . . . , xn ∈ Σ∗ be
their representatives.
We’ll construct a DFA M = (Q,Σ, δ, q0,F ) that accepts L.
For x ∈ Σ∗, let C(x) be the index i ∈ {1, . . . , n} with x ∈ [xi ].

Q = {1, . . . , n}.

δ(i, a) = C(xia).

q0 = C(ε).

F = {i : xi ∈ L}.

Claim. Let x ∈ [xi ], then δ̂(q0, x) = i.

Proof: By induction on word length.
1 Assume x ∈ [xi ] and xa ∈ [xj ].
2 By right invariance, δ(i, a) = j.

3 By i.h., δ̂(q0, xa) = δ(δ̂(q0, x), a) = δ(i, a) = j.

Therefore, M accepts x iff x ∈ L. ♠.

This is the optimal DFA, number of states wise, for L.
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Example

Construct a DFA for {w : #1(w) mod 5 = 0}, via the latter proof
method.
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Finding the minimal automata

Given a DFA M = (Q,Σ, δ,q0,F ), find the minimal (with respect to # of
states) DFA M ′ with L(M ′) = L(M).

States q1, q2 ∈ Q are equivalent, if for all x1, x2 ∈ Σ∗ with δ̂(q0, xi) = qi , it
holds that x1

L

∼ x2.

Idea: keep merging equivalent states in Q, until all states are non-equivalent.

Actual idea:

1 Start with the two sets F and Q \ F .

2 Keep splitting the sets until all states in the same set are equivalent.

To check whether states q and q′ are equivalent, check if δ(q, a) and
δ(q′, a) are in the same set, for all a ∈ Σ.

3 Merge all states in the same set.

We assume for simplicity that M has no unreachable states(?)
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Finding the minimal automata

Algorithm 10

Input: DFA M = (Q,Σ, δ, q0,F )

1 Let T = {F ,Q \ F}.

2 While ∃ S ∈ T , q1, q2 ∈ S and σ ∈ Σ∗ s.t,

δ(q1, σ) ∈ S
′ and δ(q2, σ) /∈ S ′ for some S ′ ∈ T :

1 Let Ssp = {q ∈ S : δ(q, σ) ∈ S ′}.
2 Set T = T ∪ Ssp ∪ (S \ Ssp) \ S.

3 Output DFA M ′ = (Q′, δ′, q′

0,F
′), where

◮ Q′ = T
◮ q′

0 = S0 ∈ T , where q0 ∈ S0.
◮ F ′ = {S ∈ T : S ⊆ F}
◮ δ′(S, σ) = S ′ ∈ T , s.t. δ(q, σ) ∈ S ′ for any q ∈ S.

Claim 11
The above algorithm outputs the minimal automata for L(M).

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 23 / 37



Example

q1

q
2

a b

a

a b

b
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r2
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Part III

Closure Properties of Regular Languages
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Simple Closure Properties

Regular languages are closed under complement.
1 Let M = (Q,Σ, δ, q0,F ) be a DFA that accepts L.
2 Then M ′ = (Q,Σ, δ, q0,Q \ F ) is a DFA that accepts L = Σ∗ \ L.
3 NFA ?!

Regular languages are closed under intersection.

1 L1 ∩ L2 = L1 ∪ L2.
2 Proof with automata ?
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Division

For languages L1,L2 ∈ Σ∗, define

L1/L2 = {x ∈ Σ∗ : ∃y ∈ L2, xy ∈ L1}

Examples:

L1 = (01 ∪ 1)∗ and L2 = 00. Then L1/L2 = ∅

L3 = a∗b∗c∗ and L4 = b. Then L3/L4 = a∗b∗
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Closure under division

Recall, L1/L2 = {x : ∃y ∈ L2, xy ∈ L1}

Theorem 12
Regular languages are closed under division with any language.

Proof: Let L1 be a regular language and let L2 be an arbitrary
language.

Let M = (Q,Σ, δ,q0,F ) be a DFA for L1.

Let F ′ = {q ∈ Q : ∃y ∈ L2, δ(q, y) ∈ F}

The DFA M ′ = (Q,Σ, δ,q0,F ′) accepts L1/L2. ♣

F ′ is well defined, but might be hard to compute – “non constructive
proof".
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Homomorphism

Definition 13 (Homomorphism)

An homomorphism from alphabet ∆ to words over alphabet Σ, is a
function h : ∆ 7→ Σ∗.
For w ∈ ∆∗, let h(w = w1, . . . ,wn) = h(w1) · · · h(wn).
For L ⊆ ∆∗, let h(L) = {h(w) : w ∈ L}.

Examples:

Let h : {0,1} 7→ {a,b}∗ be defined by h(1) = aba and h(0) = aa.
h(010) = aa aba aa. For L1 = (01)∗, h(L1) = (aaaba)∗.
Let h(0) = a, h(1) = a. For L2 = {0n1n : n ≥ 0}, h(L2) =
{a2n : n ≥ 0}.

Theorem 14
Regular languages are closed under homomorphism.

Proof: two options:
Using regular expressions
Using Automata
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Inverse homomorphism

Definition 15 (Inverse homomorphism)

For homomorphism h : ∆ 7→ Σ∗, define its inverse homomorphism
h−1 : Σ∗ 7→ P(∆∗), by h−1(w) = {x ∈ ∆∗ : h(x) = w}.

For L ⊆ Σ∗, let h−1(L) =
⋃

x∈L h−1(x) = {x ∈ ∆∗ : h(x) ∈ L}

Example: h(1) = aba, h(0) = aa and L2 = (ab ∪ ba)∗a.
Then h−1(L2) = {1}. (L2 has no words starting with h(0) or h(1σ)).

Claim 16
For any h : ∆ 7→ Σ∗:

1 h(h−1(L))⊆L, for any L ⊆ Σ∗

2 L⊆h−1(h(L)), for any L ⊆ ∆∗

Proof:
1 Immediate
2 Holds since w∈h−1(h(w)) for any w ∈ ∆∗
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Closure under inverse homomorphism

Theorem 17
Regular languages are closed under inverse homomorphism.

Proof idea: Let L be a regular language, let M = (Q,Σ, δ,q0,F ) be a
DFA for L and let h : ∆ 7→ Σ∗.

For each a ∈ ∆, we advance in M using h(a).

Formally, we define M ′ = (Q,∆, δ′,q0,F ), where
δ′(q,a) = δ̂(q,h(a)).

Hence, δ̂′(q,w) = δ̂(q,h(w))

w ∈ L(M ′)←→ h(w) ∈ L(M) ♣

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 31 / 37



Using Homomorphism

We know that L1 = {0n1n : n ≥ 1} is not regular, show that
L2 = {anban : n ≥ 1} is not regular.

We will prove using homomorphism and inverse homomorphism. Let

h1(a) = a, h1(b) = b, h1(c) = a. (h1 : {a,b, c} 7→ {a,b, c}∗)

h2(a) = 0, h2(b) = ǫ, h2(c) = 1. (h1 : {a,b, c} 7→ {0,1}∗)

We prove h2(h
−1
1 (L2) ∩ a∗b∗c∗) = L1. Thus, L2 is not regular (?)

h−1
1 (L2) = (a ∪ c)nb(a ∪ c)n

h−1
1 (L2) ∩ a∗b∗c∗ = {anbcn : n ≥ 1}

h2(h
−1
1 (L2) ∩ a∗b∗c∗) = {0n1n : n ≥ 1}
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Part IV

Algorithmic Questions for NFAs
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Algorithmic Questions for NFAs

Q.: Given an NFA, N, and a string w , is w ∈ L(N)?

Answer: Construct the DFA equivalent to N and run it on w .

Q.: Is L(N) = ∅?
Answer: This is a reachability question in graphs: Is there a path in the
states’ graph of N from the start state to some accepting state?

There are simple, efficient algorithms for this task.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 34 / 37



More Questions

Q.: Is L(N) = Σ∗?

Answer: Check if L(N) = ∅.

Q.: Given N1 and N2, is L(N1) ⊆ L(N2)?

Answer: Check if L(N2) ∩ L(N1) = ∅.

Q.: Given N1 and N2, is L(N1) = L(N2)?

Answer: Check if L(N1) ⊆ L(N2) and L(N2) ⊆ L(N1).

In the future, we will see that for stronger models of computations,
many of these problems cannot be solved by any algorithm.
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Part V

Summary — Regular Languages
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Summary - Regular Languages

So far we saw

Finite automata,

Regular languages,

Regular expressions,

Myhill-Nerode theorem and pumping lemma for regular languages.

Next class we introduce stronger machines and languages with more
expressive power:

pushdown automata,

context-free languages,

context-free grammars
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