Computational Models - Lecture 3¹ Handout Mode

Iftach Haitner and Yishay Mansour.

Tel Aviv University.

March 3/5, 2014

¹Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice Herlihy, Brown University.

Iftach Haitner and Yishay Mansour (TAU)

Computational Models Lecture 3

Computational Models - Lecture 3

- The programs in the homework should be written in Python/Scheme.
- Non-regular languages: two approaches
 - Pumping Lemma
 - 2 Myhill-Nerode Theorem
- Closure properties
- Algorithmic questions for NFAs
- Sipser, 1.4, 2.1, 2.2
- Hopcroft and Ullman, 3.4

(not in Sipser's book)

Proved Last Time

Theorem 1

A language is described by a regular expression, iff it is regular.

We have made a lot of progress understanding what finite automata can do, but what they cannot do?

Negative Results

Is there a DFA that accepting

- $\mathcal{B} = \{0^n 1^n : n \ge 0\}$
- $C = \{w: \#_1(w) = \#_0(w)\}$
- $\mathcal{D} = \{ w : \#_{01}(w) = \#_{10}(w) \}$

 $\#_s(w)$ – the number of times s appears in w. All languages are over $\{0, 1\}$.

Consider **B**:

- DFA must "remember" how many 0's it has seen
- Impossible with finite state.

The others languages seem to be exactly the same...

Question: Is this a proof?

Answer: No, \mathcal{D} is regular....

Part I Pumping Lemma

For any regular language \mathcal{L} there exists $\ell > 0$ (the pumping length) s.t.: Any $s \in \mathcal{L}$ longer than ℓ , can be "pumped" into a longer string in \mathcal{L} .

This is a powerful technique for showing that a language is not regular.

The Pumping Lemma

Lemma 2

For any regular language \mathcal{L} , exists $\ell > 0$ (the pumping length) s.t.: every $s \in \mathcal{L}$ with $|s| \ge \ell$ can be written as s = xyz such that: • $xy^i z \in \mathcal{L}$ for every $i \ge 0$, • |y| > 0, and • $|xy| \le \ell$.

Remarks: Without the second condition, the theorem would be trivial. The third condition is technical and sometimes useful.

Proving the Pumping Lemma

Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA accepting \mathcal{L} , and let $\ell = |Q|$. Let $s \in \mathcal{L}$ be with $|s| \ge \ell$, and consider the sequence of states M traverse as it reads $s = s_1 \dots s_n$:

 $\begin{array}{c} \uparrow & s_1 \\ q_1 \\ q_2 \\ q_2 \\ q_2 \\ q_2 \\ q_3 \\ q_1 \\ q_2 \\ q_2 \\ q_2 \\ q_2 \\ q_5 \\ F \\ \end{array}$ By the pigeonhole principle, at least one of the states in the above sequence repeats. (?)

Proving the Pumping Lemma, cont.

Let q_9 be the repeating state.

Write s = xyz

- By inspection, *M* accepts $xy^k z$ for every $k \ge 0$.
- |y| > 0, because the state q_9 is repeated.
- To ensure that |xy| ≤ ℓ, pick first state repetition, which must occur no later than ℓ + 1 states in sequence.

Corollary 3 $\mathcal{B} = \{0^n 1^n : n > 0\}$ is not regular.

Proof: By contradiction. Suppose \mathcal{B} is regular and let ℓ be its pumping length.

- Consider the string $s = 0^{\ell} 1^{\ell} \in \mathcal{B}$.
- Let x, y, z be (one possible) strings guaranteed by the pumping lemma (i.e., s = xyz)

- If y is all 0, then xy²z has too many 0's.
- If y is all 1, then xy²z has too many 1's.
- If y is mixed, then xy^2z is not of right form.

We did not use the third property.

Corollary 4

$$C = \{w : \#_1(w) = \#_0(w)\}$$
 is not regular.

Proof: By contradiction. Suppose C is regular. Let ℓ be the pumping length.

- Consider the string $s = 0^{\ell} 1^{\ell} \in C$.
- Let x, y, z be (one possible) strings guaranteed by the pumping lemma (i.e., s = xyz)

- Since $|xy| \le \ell$, the string y is all 0's.
- Thus, $xy^2z \notin C$ (more 0's than 1's).

Could we have used $s = (01)^{\ell}$?

Corollary 5

 $\mathcal{E} = \{\mathbf{0}^{i}\mathbf{1}^{j}: i > j\}$ is not regular.

Proof: By contradiction. Suppose \mathcal{E} is regular. Let ℓ be its pumping length.

- Consider the string $s = 0^{\ell} 1^{\ell-1} \in \mathcal{E}$.
- By pumping lemma, s = xyz, where $xy^k z \in \mathcal{E}$ for every $k \ge 0$, |y| > 0 and $|xy| \le \ell$.
- But $xy^0 z = xz \notin \mathcal{E}$ (at least as much 1's as 0's)

Corollary 6

The language $Primes \subset \{0, 1\}^*$ – all strings whose length is a prime number – is not regular.

Proof: Suppose *Primes* is regular accepted by DFA *M*, and let ℓ be its pumping length.

- Let $s = 1^p \in Primes$, where $p \ge \ell$ is a prime (?)
- By pumping lemma, s = xyz, where $xy^k z \in Primes$ for every $k \ge 0$.
- Let |y| = m. Hence, $xy^{p+1}z = 1^{p+mp} \in Primes$
- but p(m+1) is not prime...

Another Example

Consider the language $\mathcal{L} = \{a^i b^n c^n : n \ge 0, i \ge 1\} \cup \{b^n c^m : n, m \ge 0\}.$ Any $s \in \mathcal{L}$ can be pumped:

- If $s = a^i b^n c^n$, then set $x = \varepsilon$ and y = a.
- If $s = b^n c^m$, then set $x = \varepsilon$ and y = b.
- If $s = c^m$, then set $x = \varepsilon$ and y = c.

(in all cases z is set arbitrarily).

- Is <u>L</u> regular? No
- How can we prove it?

Part II

Characterization of Regular Languages

Iftach Haitner and Yishay Mansour (TAU)

Computational Models Lecture 3

March 3/5, 2014 15 / 37

The equivalence relation $\stackrel{\mathcal{L}}{\sim}$

Definition 7

For $\mathcal{L} \subseteq \Sigma^*$, define the equivalence relation $\stackrel{\mathcal{L}}{\sim}$ over words in Σ^* , by $x \stackrel{\mathcal{L}}{\sim} y$ if for every $z \in \Sigma^*$, it holds that $xz \in \mathcal{L} \iff yz \in \mathcal{L}$.

It is easy to see that $\stackrel{\sim}{\sim}$ is indeed an equivalence relation (reflexive, symmetric, transitive) on Σ^* . Hence, $\stackrel{\sim}{\sim}$ partitions Σ^* into equivalence classes.

For $x \in \Sigma^*$, let $[x] \subseteq \Sigma^*$ denote its equivalence class with respect to $\sim^{\mathcal{L}}$

How many equivalence classes does $\stackrel{\mathcal{L}}{\sim}$ induce? finite or infinite? Could be either (depends on \mathcal{L}).

Fact 8 (right invariance)

If $\mathbf{x} \stackrel{\mathcal{L}}{\sim} \mathbf{y}$, then $\mathbf{x} \mathbf{w} \stackrel{\mathcal{L}}{\sim} \mathbf{y} \mathbf{w}$ for every $\mathbf{w} \in \Sigma^*$

Three Examples

• $\mathcal{L}_1 = \{ w \colon \#_1(w) \mod 4 = 0 \}$

 $\stackrel{\mathcal{L}_1}{\sim}$ has finitely many equivalence classes. The equivalent classes are: [1], [11], [111], [111]

•
$$\mathcal{L}_2 = \{0^n 1^n \colon n \in \mathbb{N}\}$$

 $\stackrel{\mathcal{L}_2}{\sim}$ has infinitely many equivalence classes. $[0] \neq [0^2] \neq [0^3] \dots$

• $\mathcal{L}_3 = \{a^i b^n c^n : n \ge 0, i \ge 1\} \cup \{b^n c^m : n, m \ge 0\}$

 $\stackrel{\mathcal{L}_3}{\sim}$ has infinitely many equivalence classes.

 $[ab] \neq [ab^2] \neq [ab^3] \neq \dots$

The above statements required a proof...

Myhill-Nerode Theorem

Theorem 9 (Myhill-Nerode Theorem)

 $\mathcal{L} \subseteq \Sigma^*$ is regular iff $\stackrel{\mathcal{L}}{\sim}$ finitely many equivalence classes.

Hence

- $\mathcal{L}_1 = \{ w \in \{0,1\}^* : \#_1(w) \text{ mod } 4 = 0 \}$ is regular.
- $\mathcal{L}_2 = \{0^n 1^n : n \in \mathbb{N}\}$ is not regular.
- $\mathcal{L}_3 = \{a^i b^n c^n \colon n \ge 0, i \ge 1\} \cup \{b^n c^m \colon n, m \ge 0\}$ is not regular.

Proving Myhill-Nerode Theorem \Longrightarrow

Let \mathcal{L} be a regular language and let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA accepting it.

- Define the binary relation $\stackrel{M}{\sim}$ by $x \stackrel{M}{\sim} y$ if $\widehat{\delta}(q_0, x) = \widehat{\delta}(q_0, y)$.
- $\stackrel{M}{\sim}$ is an equivalence relation.
- $x \stackrel{M}{\sim} y \implies xz \stackrel{M}{\sim} yz$ for every $z \in \Sigma^*$. $\implies xz \in \mathcal{L}$ iff $yz \in \mathcal{L}$.
- Hence, $x \stackrel{\scriptscriptstyle M}{\sim} y \Longrightarrow x \stackrel{\scriptscriptstyle \mathcal{L}}{\sim} y$.
- Each equivalence class of [∠] corresponds to union of classes of ^M.
 Namely, ^M is a refinement of [∠]. (see drawing on board)
- Specifically, # of equivalence classes of [∠] is less or equal than # of equivalence classes of ^M/_∼.
- M has finitely many equivalence classes. (?)
- Therefore, ~ has finitely many equivalence classes.

Proving Myhill-Nerode Theorem 🦛

Assume $\stackrel{\mathcal{L}}{\sim}$ has finitely many equivalence classes and let $x_1, \ldots, x_n \in \Sigma^*$ be their representatives.

We'll construct a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that accepts \mathcal{L} .

For $x \in \Sigma^*$, let C(x) be the index $i \in \{1, ..., n\}$ with $x \in [x_i]$.

- $\mathbf{Q} = \{1, \ldots, n\}.$
- $\delta(i, a) = C(x_i a)$.
- $q_0 = C(\varepsilon)$.
- $F = \{i: x_i \in \mathcal{L}\}.$

Claim. Let $x \in [x_i]$, then $\hat{\delta}(q_0, x) = i$.

Proof: By induction on word length.

- Assume $x \in [x_i]$ and $xa \in [x_j]$.
- 2 By right invariance, $\delta(i, a) = j$.
- **3** By i.h., $\widehat{\delta}(q_0, xa) = \delta(\widehat{\delta}(q_0, x), a) = \delta(i, a) = j$.

Therefore, *M* accepts *x* iff $x \in \mathcal{L}$.

This is the optimal DFA, number of states wise, for \mathcal{L} .

Example

Construct a DFA for $\{w : \#_1(w) \mod 5 = 0\}$, via the latter proof method.

Finding the minimal automata

Given a DFA $M = (Q, \Sigma, \delta, q_0, F)$, find the minimal (with respect to # of states) DFA M' with $\mathcal{L}(M') = \mathcal{L}(M)$.

States $q_1, q_2 \in Q$ are equivalent, if for all $x_1, x_2 \in \Sigma^*$ with $\hat{\delta}(q_0, x_i) = q_i$, it holds that $x_1 \stackrel{\mathcal{L}}{\sim} x_2$.

Idea: keep merging equivalent states in Q, until all states are non-equivalent.

Actual idea:

1 Start with the two sets F and $Q \setminus F$.

Keep splitting the sets until all states in the same set are equivalent.

To check whether states q and q' are equivalent, check if $\delta(q, a)$ and $\delta(q', a)$ are in the same set, for all $a \in \Sigma$.

Merge all states in the same set.

We assume for simplicity that M has no unreachable states(?)

Finding the minimal automata

Algorithm 10

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

```
• Let \mathcal{T} = \{F, Q \setminus F\}.
```

```
While ∃ S ∈ T, q<sub>1</sub>, q<sub>2</sub> ∈ S and σ ∈ Σ* s.t,
δ(q<sub>1</sub>, σ) ∈ S' and δ(q<sub>2</sub>, σ) ∉ S' for some S' ∈ T:
Let S<sub>sp</sub> = {q ∈ S : δ(q, σ) ∈ S'}.
Set T = T ∪ S<sub>sp</sub> ∪ (S \ S<sub>sp</sub>) \ S.
Output DFA M' = (Q', δ', q'<sub>0</sub>, F'), where
```

$$\blacktriangleright Q' = \mathcal{T}$$

•
$$q_0' = \mathcal{S}_0 \in \mathcal{T}$$
, where $q_0 \in \mathcal{S}_0$.

•
$$F' = \{S \in \mathcal{T} : S \subseteq F\}$$

δ'(S, σ) = S' ∈ T,s.t. δ(q, σ) ∈ S'for any q ∈ S.

Claim 11

The above algorithm outputs the minimal automata for $\mathcal{L}(M)$.

Iftach Haitner and Yishay Mansour (TAU)

Computational Models Lecture 3

Example

Part III

Closure Properties of Regular Languages

Iftach Haitner and Yishay Mansour (TAU)

Computational Models Lecture 3

March 3/5, 2014 25 / 37

Simple Closure Properties

Regular languages are closed under complement.

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA that accepts \mathcal{L} .
- 2 Then $M' = (Q, \Sigma, \delta, q_0, Q \setminus F)$ is a DFA that accepts $\overline{\mathcal{L}} = \Sigma^* \setminus \mathcal{L}$. 3 NFA ?!
- Regular languages are closed under intersection.

 $\begin{array}{c} \bullet \\ \mathcal{L}_1 \cap \mathcal{L}_2 = \overline{\mathcal{L}_1 \cup \mathcal{L}_2}. \\ \hline \\ \mathbf{2} \end{array}$ Proof with automata ?

Division

For languages $\mathcal{L}_1, \mathcal{L}_2 \in \Sigma^*$, define

$$\mathcal{L}_1/\mathcal{L}_2 = \{ \textbf{x} \in \Sigma^* \colon \exists \textbf{y} \in \mathcal{L}_2, \ \textbf{xy} \in \mathcal{L}_1 \}$$

Examples:

- $\mathcal{L}_1 = (01 \cup 1)^*$ and $\mathcal{L}_2 = 00$. Then $\mathcal{L}_1/\mathcal{L}_2 = \emptyset$
- $\mathcal{L}_3 = a^* b^* c^*$ and $\mathcal{L}_4 = b$. Then $\mathcal{L}_3 / \mathcal{L}_4 = a^* b^*$

Closure under division

Recall, $\mathcal{L}_1/\mathcal{L}_2 = \{ x \colon \exists y \in \mathcal{L}_2, xy \in \mathcal{L}_1 \}$

Theorem 12

Regular languages are closed under division with any language.

Proof: Let \mathcal{L}_1 be a regular language and let \mathcal{L}_2 be an arbitrary language.

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA for \mathcal{L}_1 .
- Let $F' = \{q \in Q : \exists y \in \mathcal{L}_2, \delta(q, y) \in F\}$
- The DFA $M' = (Q, \Sigma, \delta, q_0, F')$ accepts $\mathcal{L}_1/\mathcal{L}_2$.

F' is well defined, but might be hard to compute – "non constructive proof".

Homomorphism

Definition 13 (Homomorphism)

An homomorphism from alphabet Δ to words over alphabet Σ , is a function $h: \Delta \mapsto \Sigma^*$. For $w \in \Delta^*$, let $h(w = w_1, \dots, w_n) = h(w_1) \cdots h(w_n)$. For $\mathcal{L} \subseteq \Delta^*$, let $h(\mathcal{L}) = \{h(w): w \in \mathcal{L}\}$.

Examples:

- Let $h: \{0,1\} \mapsto \{a,b\}^*$ be defined by h(1) = aba and h(0) = aa. h(010) = aa aba aa. For $\mathcal{L}_1 = (01)^*$, $h(\mathcal{L}_1) = (aaaba)^*$.
- Let h(0) = a, h(1) = a. For $\mathcal{L}_2 = \{0^n 1^n : n \ge 0\}$, $h(\mathcal{L}_2) = \{a^{2n} : n \ge 0\}$.

Theorem 14

Regular languages are closed under homomorphism.

Proof: two options:

- Using regular expressions
- Using Automata

Iftach Haitner and Yishay Mansour (TAU)

Inverse homomorphism

Definition 15 (Inverse homomorphism)

For homomorphism $h: \Delta \mapsto \Sigma^*$, define its inverse homomorphism $h^{-1}: \Sigma^* \mapsto P(\Delta^*)$, by $h^{-1}(w) = \{x \in \Delta^* : h(x) = w\}$.

For $\mathcal{L} \subseteq \Sigma^*$, let $h^{-1}(\mathcal{L}) = \bigcup_{x \in \mathcal{L}} h^{-1}(x) = \{x \in \Delta^* \colon h(x) \in \mathcal{L}\}$

Example: h(1) = aba, h(0) = aa and $\mathcal{L}_2 = (ab \cup ba)^*a$. Then $h^{-1}(\mathcal{L}_2) = \{1\}$. (\mathcal{L}_2 has no words starting with h(0) or $h(1\sigma)$).

Claim 16

For any $h: \Delta \mapsto \Sigma^*$:

• $h(h^{-1}(\mathcal{L})) \subseteq \mathcal{L}$, for any $\mathcal{L} \subseteq \Sigma^*$

2 $\mathcal{L}\subseteq h^{-1}(h(\mathcal{L}))$, for any $\mathcal{L}\subseteq \Delta^*$

Proof:

Immediate

2 Holds since $w \in h^{-1}(h(w))$ for any $w \in \Delta^*$

Iftach Haitner and Yishay Mansour (TAU)

Closure under inverse homomorphism

Theorem 17

Regular languages are closed under inverse homomorphism.

Proof idea: Let \mathcal{L} be a regular language, let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA for \mathcal{L} and let $h: \Delta \mapsto \Sigma^*$.

- For each $a \in \Delta$, we advance in *M* using h(a).
- Formally, we define $M' = (Q, \Delta, \delta', q_0, F)$, where $\delta'(q, a) = \widehat{\delta}(q, h(a))$.
- Hence, $\widehat{\delta}'(q, w) = \widehat{\delta}(q, h(w))$
- $w \in \mathcal{L}(M') \longleftrightarrow h(w) \in \mathcal{L}(M)$

Using Homomorphism

We know that $\mathcal{L}_1 = \{0^n 1^n : n \ge 1\}$ is not regular, show that $\mathcal{L}_2 = \{a^n b a^n : n \ge 1\}$ is not regular.

We will prove using homomorphism and inverse homomorphism. Let

• $h_1(a) = a, h_1(b) = b, h_1(c) = a.$ $(h_1 : \{a, b, c\} \mapsto \{a, b, c\}^*)$ • $h_2(a) = 0, h_2(b) = \epsilon, h_2(c) = 1.$ $(h_1 : \{a, b, c\} \mapsto \{0, 1\}^*)$ We prove $h_2(h_1^{-1}(\mathcal{L}_2) \cap a^*b^*c^*) = \mathcal{L}_1$. Thus, \mathcal{L}_2 is not regular (?)

}

•
$$h_1^{-1}(\mathcal{L}_2) = (a \cup c)^n b(a \cup c)^n$$

• $h_1^{-1}(\mathcal{L}_2) \cap a^* b^* c^* = \{a^n b c^n \colon n \ge 1\}$
• $h_2(h_1^{-1}(\mathcal{L}_2) \cap a^* b^* c^*) = \{0^n 1^n \colon n \ge 1\}$

Part IV

Algorithmic Questions for NFAs

Iftach Haitner and Yishay Mansour (TAU)

Computational Models Lecture 3

March 3/5, 2014 33 / 37

Q.: Given an NFA, N, and a string w, is $w \in \mathcal{L}(N)$?

Answer: Construct the DFA equivalent to *N* and run it on *w*.

Q.: Is $\mathcal{L}(N) = \emptyset$? Answer: This is a reachability question in graphs: Is there a path in the states' graph of *N* from the start state to some accepting state? There are simple, efficient algorithms for this task.

More Questions

Q.: Is $\mathcal{L}(N) = \Sigma^*$?

Answer: Check if $\overline{\mathcal{L}(N)} = \emptyset$.

- Q.: Given N_1 and N_2 , is $\mathcal{L}(N_1) \subseteq \mathcal{L}(N_2)$?
- Answer: Check if $\overline{\mathcal{L}(N_2)} \cap \mathcal{L}(N_1) = \emptyset$.
- Q.: Given N_1 and N_2 , is $\mathcal{L}(N_1) = \mathcal{L}(N_2)$?

Answer: Check if $\mathcal{L}(N_1) \subseteq \mathcal{L}(N_2)$ and $\mathcal{L}(N_2) \subseteq \mathcal{L}(N_1)$.

In the future, we will see that for stronger models of computations, many of these problems cannot be solved by any algorithm.

Part V

Summary — Regular Languages

Iftach Haitner and Yishay Mansour (TAU)

Computational Models Lecture 3

March 3/5, 2014 36 / 37

Summary - Regular Languages

So far we saw

- Finite automata,
- Regular languages,
- Regular expressions,
- Myhill-Nerode theorem and pumping lemma for regular languages.

Next class we introduce stronger machines and languages with more expressive power:

- pushdown automata,
- context-free languages,
- context-free grammars