Computational Models - Lecture 3 1!
Handout Mode

Iftach Haitner and Yishay Mansour.

Tel Aviv University.

March 3/5, 2014

!Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice
Herlihy, Brown University.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 1/37

Computational Models - Lecture 3

The programs in the homework should be written in
Python/Scheme.

Non-regular languages: two approaches
© Pumping Lemma
@ Myhill-Nerode Theorem (not in Sipser’s book)

Closure properties

Algorithmic questions for NFAs

Sipser, 1.4,2.1,2.2
Hopcroft and Uliman, 3.4

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 2/37

Proved Last Time

Theorem 1
A language is described by a regular expression, iff it is regular. J

We have made a lot of progress understanding what finite automata
can do, but what they cannot do?

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 3/37

Negative Results

Is there a DFA that accepting
@ 3={0"1": n >0}
0 C={w: #1(w) = #o(w)}
® D ={w: #01(W) = #10(W)}
#s(w) — the number of times s appears in w.
All languages are over {0,1}.
Consider B:
@ DFA must “remember” how many 0’s it has seen
@ Impossible with finite state.
The others languages seem to be exactly the same...

Question: Is this a proof?
Answer: No, D is regular.....

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 4137

Part |

Pumping Lemma

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3

Regular languages can be pumped

For any regular language L there exists ¢ > 0 (the pumping length) s.t.:
Any s € L longer than ¢, can be “pumped” into a longer string in L.

This is a powerful technique for showing that a language is not regular.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 6/37

The Pumping Lemma

Lemma 2

For any regular language L, exists ¢ > 0 (the pumping length) s.t.:
every s € £ with |s| > ¢ can be written as s = xyz such that:

Q xy'z € Lforeveryi >0,
Q |y| >0, and
Q [xy| <.

Remarks: Without the second condition, the theorem would be trivial.

The third condition is technical and sometimes useful.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 7137

Proving the Pumping Lemma

LetM = (Q, X, 4,01, F) be a DFA accepting £, and let ¢ = |Q|.

Lets € £ be with |s| > ¢, and consider the sequence of states M
traverse asitreads s = s;...Sp:

s; sy s3 Sy S5 Sg e Sn
T T T T T T T T T
a1 920 g d17 d12 13 dg a2 gs€ F

By the pigeonhole principle, at least one of the states in the above
sequence repeats. (?)

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 8/37

Proving the Pumping Lemma, cont.

Let qg be the repeating state.

Write s = xyz

@ By inspection, M accepts xy*z for every k > 0.
@ |y| > 0, because the state qg is repeated.

@ To ensure that |xy| < ¢, pick first state repetition, which must occur
no later than ¢ + 1 states in sequence.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 9/37

Application # 1

Corollary 3
B ={0"1": n > 0} is not regular. J

Proof: By contradiction. Suppose B is regular and let ¢ be its pumping
length.
@ Consider the string s = 0°1¢ € B.
@ Let x,y,z be (one possible) strings guaranteed by the pumping
lemma (i.e., s = xyz)

© xy'z € Bforeveryk >0,
Q ly|>0,and
Q |xy| <.

@ Ify is all 0, then xy?z has too many O’s.
@ Ify is all 1, then xy?z has too many 1s.
@ Ify is mixed, then xy?z is not of right form. &

We did not use the third property.

Application # 2

Corollary 4
C ={w: #1(w) = #o(w)} is not regular.

Proof: By contradiction. Suppose C is regular. Let ¢ be the pumping
length.

@ Consider the string s = 01/ € C.

@ Let x,y,z be (one possible) strings guaranteed by the pumping
lemma (i.e., s = xyz)

© xy'z € Bforeveryk >0,
Q |y >0, and
Q yl<t

@ Since |xy| < ¢, the string y is all O’s.
@ Thus, xy?z ¢ C (more 0’s than 1's). &

Could we have used s = (01)*?

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 11/37

Application # 3

Corollary 5
£=1{0'1:i> |} is not regular. J

Proof: By contradiction. Suppose £ is regular. Let ¢ be its pumping
length.

@ Consider the string s = 011 ¢ &,

@ By pumping lemma, s = xyz, where xy“z € & for every k > 0,
ly| > 0and |xy| < /.

@ Butxy’z =xz ¢ & (at least as much 1's as 0's) &
March 3/5,2014 12/37

Application #4

Corollary 6

The language Primes C {0,1}* — all strings whose length is a prime
number — is not regular.

Proof: Suppose Primes is regular accepted by DFA M, and let ¢ be its
pumping length.

@ Lets = 1P € Primes, where p > / is a prime (?)
@ By pumping lemma, s = xyz, where xy“z € Primes for every

k > 0.
@ Let ly| = m. Hence, xyP™'z = 1P*™ ¢ Primes
@ but p(m + 1) is not prime... &

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 13/37

Another Example

Consider the language £ = {a'b"c": n > 0,i > 1} U {b"c™: n,m > 0}.
Any s € £ can be pumped:
@ Ifs=a'b"c", thensetx =candy = a.
@ If s =Db"c™, thensetx =candy = b.
@ Ifs=c™, thensetx =candy = c.
(in all cases z is set arbitrarily).

Is £ regular? No

How can we prove it?

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 14/37

Part Il

Characterization of Regular Languages

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3

The equivalence relation A
Definition 7

For £ C X*, define the equivalence relation £ over words in >*, by
xiiy if forevery z € ¥*,itholdsthatxz € L <= yz € L.

It is easy to see that % is indeed an equivalence relation (reflexive,
symmetric, transitive) on *.

L e ¥ .
Hence, ~ partitions £* into equivalence classes.

For x € ¥*, let [x] € X* denote its equivalence class with respect to ~ J

How many equivalence classes does < induce? finite or infinite?

Could be either (depends on £).

Fact 8 (right invariance) J

If x <y, then xw < yw for everyw € ©*

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 16/37

Three Examples

® L7 ={w: #;(w) mod 4 =0}

~ has finitely many equivalence classes.

The equivalent classes are: [1], [11], [111], [1111]
® L, ={0"1":neN}

= has infinitely many equivalence classes.

[0] # [07] # [0%].....
@ L3={ab"c":n>0,i >1}uU{b"c™: n,m >0}

= has infinitely many equivalence classes.
[ab] # [ab?] # [ab%] # ...

The above statements required a proof...

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 17/37

Myhill-Nerode Theorem

Theorem 9 (Myhill-Nerode Theorem)

£ C ¥* is regular iff ~ finitely many equivalence classes. J

Hence
@ L1 ={w € {0,1}*: #1(w) mod 4 = 0} is regular.
® £, ={0"1": n € N} is not regular.
@ L3={ab"c":n>0,i >1}uU{b"c™: n,m > 0} is not regular.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 18/37

Proving Myhill-Nerode Theorem —

Let £ be a regular language and let M = (Q, X, 6,qo, F) be a DFA
accepting it.

Define the binary relation ~ by x 2y if 5(qg, X) = 6(qo,).

~ is an equivalence relation.

o x~Ny = xz~yzforeveryz e ¥*.
— xz e Liffyz € L.

@ Hence,x Xy = x ~y.
@ Each equivalence class of £ corresponds to union of classes of X,
M . - L .
Namely, ~ is a refinement of ~. (see drawing on board)
@ Specifically, # of equivalence classes of < is less or equal than #
of equivalence classes of ~.
@ X has finitely many equivalence classes. (?)
@ Therefore, ~ has finitely many equivalence classes. [

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 19/37

Proving Myhill-Nerode Theorem <«

Assume ~ has finitely many equivalence classes and let x;, ..., X, € £* be
their representatives.

We'll constructa DFA M = (Q, X, §, qo, F) that accepts L.
Forx € £*, let C(x) be the index i € {1,...,n} with x € [xi].
@ Q={1,...,n}.
@ 4(i,a) =C(xja).
@ go = C(e).
O F={i:x €L}

~

Claim. Let x € [xi], then 6(go,X) = i. J

Proof: By induction on word length.
© Assume x € [x;] and xa € [x]].
@ By right invariance, 6(i,a) = j.
© Byi.h., 5(qo, xa) = 6(5(do, X),a) = &(i,a) =j.
Therefore, M accepts x iff x € L. 'y

This is the optimal DFA, number of states wise, for L.

Example

Construct a DFA for {w: #;(w) mod 5 = 0}, via the latter proof
method.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3

Finding the minimal automata

GivenaDFAM = (Q, X, ,qo, F), find the minimal (with respect to # of
states) DFA M’ with £L(M’) = L(M).

~

States g1, 02 € Q are equivalent, if for all X3, X, € * with 6(qo, Xi) = q;, it
holds that x; ~ ;.

Idea: keep merging equivalent states in Q, until all states are non-equivalent.
Actual idea:

@ Start with the two sets F and Q \ F.
@ Keep splitting the sets until all states in the same set are equivalent.

To check whether states g and q’ are equivalent, check if §(g,a) and
5(g’,a) are in the same set, foralla € .

© Merge all states in the same set.

We assume for simplicity that M has no unreachable states(?)

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 22/37

Finding the minimal automata

Algorithm 10
Input: DFAM = (Q, X, 4, do, F)

O Let7T={F,Q\F}
Q While3SeT,q1,qpeSando € I* st,
d(d1,0) € S’ and 6(qz,0) ¢ S’ for some S’ € T

O LetSyp, ={qeS:4(q,0) €S’}

© Output DFA M’ = (Q', ', q}, F'), where

» Q' =T

» gy =So € T, where qo € So.

» F'={SeT:SCF}

» §/(S,0)=8"€T,s.t d(q,0) e S’ forany q € S.
Claim 11

The above algorithm outputs the minimal automata for £(M).

v

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014

23/37

Example

SN
OO >

a b a

() (D

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3

Part Il

Closure Properties of Regular Languages

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3

Simple Closure Properties

@ Regular languages are closed under complement.

©Q LetM =(Q,%,6,qo,F) be a DFA that accepts £.
@ ThenM’ = (Q,X,4,q09,Q \ F) is a DFA that accepts £ = X* \ L.
Q NFA 2!

@ Regular languages are closed under intersection.

Q LinLy=LiUL,.
@ Proof with automata ?

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 26/37

Division

For languages L1, L, € ¥*, define

Li1/L,={x€X":Ty € Ly, Xy € L1}

Examples:
® £;=(01ul)*and L, =00. Then Ly /L, =)
® L3 =a*b*c*and L4 =b. Then L3/L4 = a*b*

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 27137

Closure under division

Recall, £1/L, = {x: 3y € Lo, Xy € L1}
Theorem 12
Regular languages are closed under division with any language. J

Proof: Let £ be a regular language and let £, be an arbitrary
language.

® LetM = (Q,%,4,qo,F) be a DFA for £;.
@ LetF'={qeQ:3y e Lydiq,y) eF}
® The DFAM’' = (Q,X,4,q0,F’) accepts L1/L5. &

F’ is well defined, but might be hard to compute — “non constructive
proof".

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 28/37

Homomorphism

Definition 13 (Homomorphism)

An homomorphism from alphabet A to words over alphabet ¥, is a
function h: A — X*.

Forw € A*, leth(w =ws,...,wp) = h(wy) - - h(wy).

For £ C A*, leth(£) = {h(w): w € L}.

Examples:
@ Leth: {0,1} — {a,b}* be defined by h(1) = aba and h(0) = aa.
h(010) = aaabaaa. For £; = (01)*, h(L1) = (aaaba)*.
@ Leth(0) =a, h(1) =a. For £, = {0"1": n > 0}, h(L;) =
{@®": n >0}.
Theorem 14
Regular languages are closed under homomorphism. J

Proof: two options:
@ Using regular expressions
@ Using Automata

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 29/37

Inverse homomorphism

Definition 15 (Inverse homomorphism)

For homomorphism h: A — ¥*, define its inverse homomorphism
h=1: ¥* — P(A*), by h~}(w) = {x € A*: h(x) = w}.

For £ C %, leth (L) = Uy, h7(X) = {x € A*: h(x) € £}

Example: h(1) = aba, h(0) = aa and £, = (ab U ba)*a.
Then h=1(L,) = {1}. (£, has no words starting with h(0) or h(10)).

Claim 16

Forany h: A — X*:

O h(h~1(L))cL, forany £ C &+
©Q L£ch7(h(L)), forany £ C A*

Proof:
© Immediate
© Holds since weh=t(h(w)) for any w € A*

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 30/37

Closure under inverse homomorphism

Theorem 17
Regular languages are closed under inverse homomorphism. J

Proof idea: Let £ be a regular language, letM = (Q, %, 4,qo,F) be a
DFAfor Landleth: A — X*.

@ For each a € A, we advance in M using h(a).
@ Formally, we define M’ = (Q, A, 4", qo, F), where
0'(g,@) = d(a, h(a)).
@ Hence, §'(q,w) = d(q, h(w))
o w e L(M) «— h(w) € L(M) &

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 31/37

Using Homomorphism

We know that £; = {0"1": n > 1} is not regular, show that

L, ={a"ba": n > 1} is not regular.

We will prove using homomorphism and inverse homomorphism. Let
® hi(a) =a, hy(b) =b, hy(c) = a. (h1: {a,b,c} — {a,b,c}¥)
® hy(a) =0, hy(b) =€, hy(c) = 1. (h1: {a,b,c} — {0,1}*)

We prove hy(h;*(£2) Na*b*c*) = L. Thus, £, is not regular (?)

@ h;*(£2) = (auc)b(auc)"
@ hi'(£y) nab*c* = {a"c": n > 1}
@ hy(h71(£2) na*b*c*) = {0"1": n > 1}

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 32/37

Part IV

Algorithmic Questions for NFAs

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3

Algorithmic Questions for NFAs

Q.: Given an NFA, N, and a string w, isw € £(N)?
Answer: Construct the DFA equivalent to N and run it on w.
Q. Is L(N) =07

Answer: This is a reachability question in graphs: Is there a path in the
states’ graph of N from the start state to some accepting state?

There are simple, efficient algorithms for this task.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 34/37

More Questions

Q. Is £(N) = £*?

Answer: Check if L(N) = 0.

Q.: Given Ny and Ny, is £(N1) € £(N,)?

Answer: Check if £(N,) N £(N1) = 0.

Q.: Given Nj and Ng, is £(N1) = £(N3)?

Answer: Check if £L(N1) € £(Nz) and £(N2) € L(N3).

In the future, we will see that for stronger models of computations,
many of these problems cannot be solved by any algorithm.

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 35/37

Part V

Summary — Regular Languages

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3

Summary - Regular Languages

So far we saw
@ Finite automata,
@ Regular languages,
@ Regular expressions,
@ Myhill-Nerode theorem and pumping lemma for regular languages.

Next class we introduce stronger machines and languages with more
expressive power:

@ pushdown automata,
@ context-free languages,
@ context-free grammars

Iftach Haitner and Yishay Mansour (TAU) Computational Models Lecture 3 March 3/5, 2014 37/37

	Pumping Lemma
	Characterization of Regular Languages
	Closure Properties of Regular Languages
	Algorithmic Questions for NFAs
	Summary — Regular Languages

